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ABSTRACT  

First order shear deformation (FSDT) theory for laminated composite beams is used to study free vibration of 

laminated composite beams, and finite element method (FEM) is employed to obtain numerical solution of the 

governing differential equations. Free vibration analysis of laminated beams with rectangular cross – section for 

various combinations of end conditions is studied. To verify the accuracy of the present method, the frequency 

parameters are evaluated and compared with previous work available in the literature. The good agreement with 

other available data demonstrates the capability and reliability of the finite element method and the adopted beam 

model used. 

 
KEYWORDS: Finite element method, first order shear deformation, free vibration, laminated beams, cross – ply 
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1. INTRODUCTION 

 
Laminated composite beams and plates are commonly used in automotive, naval, aircraft, light weight structure, 

aerospace exploration and civil and mechanical engineering applications. Composite materials have interesting 

properties such as high strength to weight ratio, high stiffness to weight ratio, ease of fabrication, resistance to 

corrosion and wear, fatigue and impact resistance, and some other superior properties. Therefore, they have taken the 

place of the other engineering materials [1], [2] and [3]. Composite beams find important area of application in many 

mechanical, civil and aeronautical engineering structures [4], [5] and [6]. As a result, studies on their static and 
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dynamic behavior analysis have gained an important place among mechanical and civil engineering research, and 

hence a vast amount of study has been carried out on this area [7] and [8]. 

 

A laminated composite material consists of several layers of a composite mixture consisting of fibers and matrix. Each 

layer may have similar or dissimilar material properties with different fiber orientations under varying stacking 

sequence. There are many open issues relating to design of these laminated composites. Design engineer must 

consider several alternatives such as best stacking sequence, optimum fiber angles in each layer as well as number of 

layers itself based on criteria such as achieving highest natural frequency or buckling loads of such structure [9]. 

Regarding the bending, buckling or vibration problems found in laminated beams, the difficulty involved is in solving 

the related partial differential equations. Closed form solution is possible when at least a pair of opposite edges is 

simply supported. Otherwise, an approximate method such as Galerkin method, the Rayleigh – Ritz method, the 

extended Kantorovich method and the finite element method (FEM) is usually employed [10]. 

 

As presented by some scholars and researchers [11] and [12], the dynamic characteristics of laminated composite 

beams have not been studied as extensively as those of plates and shells. Yildirim [13] pointed out that a substantial 

number of publications on laminated beams are based on the classical laminate theory i.e. the Bernoulli – Euler theory, 

which neglects the influence of transverse shear and rotary inertia. In general, since composite materials have a high 

ratio of extensional modulus to transverse shear modulus, the effect of the transverse shear deformation must be 

considered in the dynamic analysis especially for moderately thick or thick beams. Khideir and Reddy [14] showed 

that the effects of rotary inertia and shear deformation can be significant even for fundamental frequencies of 

laminated beams with boundary conditions, such as clamped – free, clamped – simply supported and clamped – 

clamped.  

 

The theory used in the present paper comes under the category of displacement theories as classified by Phan and 

Reddy [15]. In this theory, which is called first order shear deformation theory (FSDT), the transverse planes, which 

are originally normal and straight to the middle plane of the plate, are assumed to remain straight but not necessarily 

normal after deformation, and consequently shear correction factors are employed in this theory to adjust the 

transverse shear stress, which is constant through thickness. Numerous studies involving the application of the first 

order theory to vibration, bending and buckling analyses can be found in the literature of Reddy [16], Reddy and Chao 

[17], Prabhu Madabhusi – Raman and Julio F. Davalo [18], and J. Wang, K. M. Lew, M. J. Jan, S. Rajendran [19]. 

 

2. MATHEMATICAL FORMULATION 

 

Consider a beam of length L, breadth b, and depth h made up of n plies with varying thickness, orientation, and 

properties; but perfectly bonded together as shown in figure 2.1. 
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Treat the beam as a plane stress problem, and employ first 

displacement U and the lateral displacement W are as follows:

Where � and � are the mid – plane displacements, 

time. 

The strain – displacement relations are: 

Where the subscripts have the same meanings as those used in three 

longitudinal strain and �� is the through 

follows:  

Where the superscript (e) denotes any of the N quadratic 

below. 

Figure 2.2:
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Figure2.1: n – layered beam 

Treat the beam as a plane stress problem, and employ first – order shear deformation theory. The longitudinal 

displacement U and the lateral displacement W are as follows: 

�(�,�,�)= �(�,�)+ ��(�,�) 

� (�,�,�)= �(�,�) 

plane displacements, �  is the rotation of the deformed section about the y 

�� =
��

��
+ �

��

��
 

�� =
��

��
+ �  

Where the subscripts have the same meanings as those used in three – dimensional elasticity formulation i.e. 

is the through – thickness shear strain. These strains can be written in matrix form as 

� =  ����                   (1) 

Where the superscript (e) denotes any of the N quadratic – order. Lineal element of the beam as shown in fig

Figure 2.2: quadratic – order element 
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order shear deformation theory. The longitudinal 

is the rotation of the deformed section about the y – axis, and � is 

dimensional elasticity formulation i.e. �� is the 

train. These strains can be written in matrix form as 

order. Lineal element of the beam as shown in figure 2.2 
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Where,     (� = �/ 2� ) 

The element strain – displacement matrix is given by:  

�� = �

���
��

0 �
���
��

0
���
��

��

�, �= 1,2,3 

The vector of nodal displacements is: 

��
�
= [�� ����], �= 1,2,3 

��(�), ��(�), and ��(�),  are �� −  continuous shape functions as follows: 

�� = − �(1 − �)/2  

�� = 1 −  �� 

�� = �(1 + �)/2 

The constitutive relationship is: 

� = �� = ����� 

Where D is an 2 × 2 material property matrix given in Appendix (A). The strain energy is given by: 

�� =
1

2
� �����
��

         (2) 

Where � denotes volume i.e. �� = � �� �� 

Substitute equation (1) into equation (2) to get: 

�� =
1

2
� (����)�� ������
��

 

or 

�� =
��

�

2
� ���� ������     (3)
��

 

��              �� =  
1

2
��

�
� ��� 

Where � � is the element stiffness matrix 
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�,�= 1,2,3 

Where, 

[���,���,���]= � � ���[1,�,�
�]��

��

����

�

���
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��� = �� � � ���

��

��� �

��

�

���

 

��  is the shear factor = 5/6, and ��� and ��� as defined in Appendix (A).   

Work done by inertia forces is given by: 

� =
1

2
�� �

���

���
� +

���

���
� ���

�

 

By introducing equation (1), the above equation is transformed to: 

� =
1

2
�� �(� + ��)

��

���
(� + ��)+ �

���

���
���

�

 

Where � is the mass density. 

It is assumed that motion due to vibration is harmonic i.e.  

���

���
= − � �� 

Where � stands for �,�,�; and �  is the natural circular frequency. Hence, 

� = −
1

2
�� � � [� � �]� �

�
�
�
���

�

 

By introducing the shape functions, the work done by inertia forces is given as follows: 

� = −
1

2
�� ���

�
� � ������
�

 

Where:  

� = �
�� 0 0
0 �� 0
0 0 ��

�,�= 1,2,3 

� = �
1 0 �
0 1 0
� 0 ��

� 

∴ � =
1

2
��

�
� �����           (4) 

Where �� is the element mass matrix  

�� = � �� �����
�

 

�� = �

������ 0 ������
0 ������ 0

������ 0 ������

�   �,�= 1,2,3 

Where, 
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[��,��,��]= � � ��[1,�,��]��

�

���

 

 

 

In the absence of damping and external loads, the total energy is given by: 

�� + � = 0 

�.�.          
1

2
��

�
� ��� −

1

2
��

�
� ����� = 0 

��     [� � − � ���]�� = 0 

Which can be expressed globally as:  

[� − � ��]� = 0                    (5) 

Where: 

� = � ��
� ,    � = � ��

� , � = � ��
� 

Where K, M, and � are the global stiffness matrix, mass matrix, and vector of nodal displacements respectively. 

The non – dimensional quantities used in the analysis are: 

��= �
�

ℎ�
�� , �� =

�

ℎ
 ,        ��= �

�

ℎ
��  

��̅� =
���
��ℎ

  ,        ���� =
���
��ℎ

�
  ,        ���� =

���
��ℎ

�
 

��̅� =
���
��ℎ

   ,         ��=
�

ℎ
 

��̅ =
��
�ℎ

   ,         ��̅ =
��
�ℎ�

 

��̅ =
��
�ℎ�

 ,       �� = ����
�

��ℎ
�
 

Where �� and � are the values of the moduli of elasticity in the fiber direction and density respectively of the top ply 

of the beam. 

The element stiffness matrix K� , and element mass matrix �� involve integrals which can be performed by hand. The 

non-dimensional entries in these matrices are given in Appendix (B). It should be noted that the natural frequencies 

are independent on the breadth of the beam as b cancels out in equation (5). However, it must be stated that treating 

the beam as a plane stress problem demands that the breadth must be small compared with the depth.  

The number of elements employed determine the size of the global stiffness and mass matrices. If the number of 

elements is N, then K and M are 6 (N – 1) + 9 square matrices. The stiffness and mass matrices are both symmetrical 

and therefore only those elements in the upper half of each matrix are given in the appendix. 

The number of elements required in any analysis depends on the aspect ratio of the beam, the end conditions, and the 

material properties. However, before that comes the number of frequencies required. If only the first couple of 

frequencies are required, then perhaps five or six elements may be sufficient in yielding accurate results. Accurate 
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results are those results which do not alter significantly with the increase of the number of elements. However, if 20 

frequencies of a slender beam are to be computed with reasonable accuracy, then one may have to employ 50 elements 

as in the present study. 

 

3. BOUNDARY CONDITIONS 

 

All of the analyses described in this paper have been undertaken assuming the beam to be subjected to identical and / 

or different support conditions. The eight sets of the edge conditions used here are designated as clamped – clamped 

(CC), clamped – simply supported in – plane fixed (CS1), clamped – simply supported in plane free (CS2), clamped – 

free (CF), simply supported in plane fixed (SS1), simply supported in plane free (SS2), simply supported free (SF), 

free – free (FF) are shown in table 3.1 below. 

 

 

Table 3.1 Boundary conditions 

 

 �� �� �� �� �� �� 

Clamped – clamped (CC) 0 0 0 0 0 0 

Clamped – simply supported in plane fed (CS1) 0 0 - 0 0 0 

Clamped – simply supported in plane free (CS2) - 0 - 0 0 0 

Clamped – free (CF) - - - 0 0 0 

Simply supported in plane fixed (SS1) 0 0 - 0 0 - 

Simply supported in plane free (SS2) - 0 - - 0 - 

Simply supported free (SF) - - - - 0 - 

Free – free (FF) - - - - - - 

 

4. VERIFICATION OF THE FINITE ELEMENT (FE) METHOD  

 

The present FE results are compared with similar results generated by other FE and/ or alternative techniques 

including approximate analytical and exact solutions so as to validate the present FE program. 

For verification consider a AS 4/3501 – 6 graphite/ epoxy composite beam of rectangular cross – section with all fiber 

angles arranged to (0/ 90/ 90/ 0). The material properties of the beam are given as follows: 

�� = 144.8���,��� = 9.65���,��� = ��� = 4.14���,  

��� = 3.45���,��� ��� = 0.3 

The dimensions of the beam are taken as follow: 
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L = length of laminated composite beam = 0.381 m 

b = breadth of laminated composite beam = 25.4 mm 

h = thickness of each ply = 25.4 mm 

In table 4.1 below the present non – dimensional frequencies of cross – ply laminated (0/ 90/ 90/ 0) beam with aspect 

ratio (L/h = 15) are compared with three other results of Refs. [20], [21] and [11]. The verification process utilizes 

different boundary conditions for the first three modes of vibration.  

The four sets of results showed good agreement especially in the first mode. 

 

 

Table 4.1 Non – dimensional natural frequencies  ��� = � ��/���/��� of symmetric (0/ 90/ 90/ 0) cross – ply 

beam (L/ h = 15) 

 

Boundary Condition mode Ref. 

[20] 

Ref. 

[21] 

Ref. 

[11] 

Present 

study 

 

Clamped – clamped (CC) 

1 4.5940 4.5941 4.608 4.5956 

2 10.2906 10.2908 10.365 10.2984 

3 16.9659 16.9662 17.149 16.9929 

 

Clamped – free (CF) 

1 0.9241 0.9241 - 0.9242 

2 4.8925 4.8925 - 4.8939 

3 11.4400 11.4401 - 11.4493 

Clamped – simply supported in plane 

free (CS2) 

1 3.5254 3.5254 - 3.5262 

2 9.4423 9.4424 - 9.4482 

3 16.3839 16.3841 - 16.4080 

Simply – simply supported in plane free 

(SS2) 

1 2.5023 2.5024 - 2.5026 

2 8.4812 8.4813 - 8.4853 

3 15.7558 15.7559 - 15.7769 

 

It is observed from table 4.2 that the prediction of the natural frequencies by the present study of first order shear 

deformation theory are closer to that of plate theory (i.e. PT1 and PT2) results of Refs. [22] and [23], and are far away 

from that of high order beam theory (i.e. HOBT4 and HOBT5) results of Ref. [22] especially as the mode of vibration 

increases. 
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Table 4.2 Comparison of non – dimensional natural frequencies ��� = � ��/���/��� of a clamped – free 

supported laminated composite beam  (0/ 90/ 90/ 0) 

 

Mode 

Number 

HOBT 4 

[22] 

HOBT 5 

[22] 

PT 1  

[23]  

PT 1 

 [22] 

PT 2  

[23] 

PT 2  

[22] 

Present  

1 0.9241 0.9241 0.9185 0.9225 0.9134 0.9222 0.9242 

2 4.9852 4.9852 4.7658 4.9209 4.8610 4.9212 4.8939 

3 11.8323 11.8323 11.2340 11.5957 11.5470 11.5470 11.4493 

 

A symmetric cross – ply (0/ 90/ 90/ 0) thin beam under simply – simply supported in plane free (SS2) condition is 

considered for free vibration analysis. The non - dimensional natural frequencies (��) obtained from the present 

investigation are compared in table 4.3, with higher order theory (HOT) and layer wise theory (LWT) of Ref. [24], the 

first order beam theory (FOBT) by Marur and Kant of Ref. [25], higher order beam theory (HOBT) by Kant et al. of 

Ref. [26], the mixed theory by Rao et al. of Ref. [27] and the FEM solution by Ramtekkar et al. of Ref. [28]. The 

present results have been observed to be in good agreement with the FOBT results. 

Table 4.3 Comparison of non – dimensional natural frequencies ��� = � ��/���/��� of simply supported 

symmetric  (0/ 90/ 90/ 0) beams, (L/h = 15) 

 

Mode  HOT 

[24] 

LWT [24] Marur and Kant 

FOBT[25] 

Kant et al. 

HOBT [26] 

Roa et al. 

[27] 

Ramtekkar 

et al. [28]  

Present 

1 2.519 2.518 2.512 2.516 2.513 2.516 2.5026 

2 8.682 8.683 8.589 8.669 8.660 8.673 8.4853 

3 16.378 16.3803 16.045 16.320 16.330 11.439 15.7769 

 

The non – dimensionalized first three natural frequencies of a symmetric cross – ply (0/ 90/ 90/ 0) for clamped – 

clamped (C – C), clamped – simply supported (C – S2) and clamped – free (C – F) boundary conditions are compared 

in table 4.4 with similar results presented in [29], [20], [22], and [30]. As it can be seen from this table, good 

agreement exists between the obtained results in this work and other references, especially those results found in Ref. 

[20].  
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Table 4.4 Comparison of non – dimensionalized natural frequencies ��� = ���/ℎ��/��� of symmetric cross – 

ply beams  (0/ 90/ 90/ 0) beams, (L/h = 15) 

 

Beam supported type Mode Number [29] [20] [22] E1 [22] E2 [30] Present 

 

C – C  

1 4.618 4.594 4.643 4.644 4.617 4.5956 

2 10.796 10.291 10.927 10.928 10.471 10.2984 

3 16.984 16.966 17.541 17.545 18.160 16.9929 

 

C – S2  

1 3.613 3.525 -  - 3.706 3.5262 

2 9.569 9.442 -  - 9.650 9.4482 

3 16.482 16.384 -  - 17.384 16.4080 

 

C – F  

1 -  0.924 0.923 0.922 0.923 0.9242 

2 -  4.892 4.921 4.921 4.920 4.8939 

3 -  11.440 11.596 11.596 11.585 11.4493 

 

Normalized natural frequencies of damped – free (C – F) beam with cross – ply lamination (0/ 90/ 90/ 0) are taken up 

for comparison as shown in table 4.5. Through the close correlation observed between the present model and the 

earlier works [31] and [32], accuracy and adequacy of the first order model is established. 

 

 

Table 4.5Comparison of non – dimensional natural frequencies ��� = ���/ℎ��/��� of simply supported 

symmetric (0/ 90/ 90/ 0) beams (L/h = 15) 

 

Mode Number Ref. [31] Ref. [32] Present 

1 0.9214 0.9231 0.9242 

2 4.8919 4.8884 4.8939 

3 11.4758 11.4331 11.4493 

  

5. NEW NUMERICAL RESULTS  
 

It was decided to undertake study cases and generate results of natural frequencies for cross – ply symmetrically 

laminated (0/ 90/ 90/ 0) composite beams to be used as bench marks for other researchers. 

The natural frequencies of a beam are affected by many factors such as the orthotropic properties of an individual 

lamina or ply, the number and orientation of the plies from which the beam is built, the material anisotropy, the aspect 

ratio of the beam, and the end conditions. A large amount of data has been produced which cannot be presented in a 

limited space as provided by this publication. For this reason, the results of a beam with the following characteristics 

are presented: 

 



 

International Journal of Engineering Research And Advanced Technology (IJERAT)                                                                                                        

ISSN: 2454-6135                                                                        [Volume. 03 Issue.2,  February– 2017] 

www.sretechjournal.org                

 

15 

Publication Impact Factor (PIF): 1.02                                                                   www.sretechjournal.org 

MATERIAL PROPERTIES: 

��/�� = 10,25,40 ,���/�� = ���/�� 

= 0.5 ,���/�� = 0.2 ,� = 0.25 

Aspect ratio (L/h) = 10, 15, 20 

End conditions: (1) clamped – clamped (CC), (2) clamped – simply supported in plane fixed (CS1), (3) clamped – 

simply supported in plane free (CS2), (4) clamped – free (CF), (5) simply – simply supported in plane fixed (SS1), (6) 

simply – simply supported in plane free (SS2), (7) simply supported – free (SF), and (8) free – free (FF). The results 

are shown in tables 5.1, 5.2, 5.3 and 5.4 below: 

 

Table 5.1 Natural frequencies of a beam with E1/E2 = 10, L/h= 10 
 

Mode CC CS CS2 CF SS1 SS2 SF FF 

1 4.0390 3.2200 3.8791 3.2200 0.9052 2.4003 3.6699 5.2589 

2 8.6428 8.1503 8.1503 4.4174 7.5725 7.5725 9.3450 11.2350 

3 13.9671 13.6767 11.6859 9.8606 13.3729 11.6859 11.6859 17.4446 

4 19.5124 19.3620 13.6767 11.6859 19.2033 13.3729 15.3531 23.3720 

5 23.3720 23.3720 19.3620 15.5921 23.3720 19.2033 21.2961 23.4438 

6 25.1689 25.0807 25.0807 21.4317 24.9929 24.9929 27.1686 29.4149 

7 30.8823 30.8324 30.8324 27.2363 30.7808 30.7808 33.0326 35.3126 

8 36.6901 36.6573 35.0589 33.0802 36.6256 35.0589 35.0589 41.3584 

9 42.6184 42.5994 36.6573 35.0589 42.5791 36.6256 38.9551 46.7486 

10 46.7486 46.7486 42.5994 38.9768 46.7486 42.5791 44.9856 47.3764 

 

Table 5.2 Natural frequencies of a beam with E1/E2 = 25, L/h= 15 

 

Mode CC CS CS2 CF SS1 SS2 SF FF 

1 3.9103 3.1415 3.1415 0.8957 2.3661 2.3661 3.6223 5.2016 

2 8.3177 7.8807 7.8807 4.4143 7.3664 7.3664 9.1052 10.9638 

3 13.4019 13.1509 13.1509 9.5590 12.8902 12.8902 14.8272 16.8786 

4 18.6735 18.5451 17.0120 15.0294 18.4101 17.0120 17.0120 22.5752 

5 24.0346 23.957 18.5451 18.541 23.8831 18.4101 20.4604 28.2415 

6 29.4444 29.3998 23.9587 20.5754 29.3541 23.8831 26.0237 33.8726 

7 34.0243 34.0243 29.3998 26.0827 34.0243 29.3541 31.5850 34.0243 

8 34.9403 34.9102 34.9102 31.6263 34.8806 34.8806 37.2134 39.6308 
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9 40.5524 40.5324 40.5324 37.2365 40.5119 40.5119 42.9611 45.4879 

10 46.2558 46.2393 46.2393 42.9817 46.2233 46.22333 48.6975 54.0988 

 

Table 5.3 Natural frequencies of a beam with E1/E2 = 40, L/h= 20 

 

Mode CC CS CS2 CF SS1 SS2 SF FF 

1 4.0285 3.2102 3.2102 0.90000 2.3903 2.3903 3.6679 5.2748 

2 8.6430 8.1470 8.1470 4.4205 7.5666 7.5666 9.3691 11.3057 

3 13.9763 13.6836 13.6836 9.8854 13.3765 13.3765 15.4025 17.5493 

4 19.5305 19.3750 19.3750 15.6466 19.2119 19.2119 21.3658 23.5954 

5 25.1890 25.0963 22.5080 21.5041 25.0033 22.5080 22.5080 29.5965 

6 30.9047 30.8487 25.0963 22.5080 30.7915 25.0033 27.2586 35.5740 

7 36.7114 36.6734 30.8487 27.3335 36.6357 30.7915 33.1480 41.667 

8 42.6413 42.6150 36.6734 33.1985 42.5883 36.6357 39.1063 45.0162 

9 45.0162 45.0162 42.6150 39.1374 45.0162 42.5883 45.1890 47.8839 

10 48.6671 48.6455 48.6455 45.2144 48.6241 48.6241 51.2532 57.0335 

 

 

Table 5.4 comparison between the natural frequencies of beam (0/ 90/ 90/ 0) (E1/ E2 = 40, L/h=20) and a similar 

isotropic beam (E=200kN/mm2, G=80kN/mm2) for the different end conditions. 

 

Mode CC CF SS2 

Laminate Isotropic  Laminate Isotropic  Laminate Isotropic  

1 4.0285 6.5819 0.9000 1.0466 2.3903 2.9324 

2 8.6430 17.8388 4.4205 6.4959 7.5666 11.6129 

3 13.9763 34.2473 9.8854 17.9250 13.3765 25.7288 

4 19.5305 55.2903 15.6466 32.4462 19.2119 32.4462 

5 25.1890 64.8929 21.5041 34.4487 22.5080 44.86.39 

6 30.9047 80.5892 22.5080 55.6946 25.0033 68.6063 

7 36.7114 109.8995 27.3335 81.2855 30.7915 96.6338 

8 42.6413 129.7987 33.1985 97.3420 36.6357 97.3420 

10 48.6671 180.6269 45.2144 144.7889 48.6241 162.2727 

 

6. CONCLUSIONS  

 

A first – order shear deformation theory is used to study the undamped natural frequencies of cross – ply 

symmetrically laminated beams of the arrangement (0/ 90/ 90/ 0). Finite element (FE) method is presented for the 

analysis of the laminated beams. The convergence and accuracy of the FE solutions are established by comparison 
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with different exact and approximate solutions. The present FE method shows a good agreement with other analytical 

and numerical methods used in the verification scheme. Finally, a series of new results of laminated composite beams 

have been presented. These results show the following: 

1. The natural frequencies of different boundary conditions of laminated composite beam have recorded. The results 

show good agreement with the existing literature used in the verification process. 

2. It is found that natural frequency is minimum for clamped – free supported beam and maximum for clamped – 

clamped and free – free supported beam. In between these extreme values, natural frequencies of simply – simply 

supported in plane free and clamped – simply supported in plane free lies respectively. 

3. It is found that natural frequency increases as the value of the Young's modulus of the fiber increases. 

4. It is also found that the material anisotropy has relatively negligible effect on the mode shapes. 

5. The aspect or slenderness ratio has a considerable effect on all modes of vibration. 
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APPENDICES 

Appendix (A) 

The matrix of material properties is: 

� = �
��� 0
0 ���

� 

���  and  ���  are the transformed properties from fiber direction to the beam x – direction. 

http://dx.doi.org/10.1590/1679-78251743
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and � is the angle of orientation of the ply with respect to the beam axis. 

�� , ��� , ���  represent the Young's moduli, shear moduli and Poisson's ratio for an orthotropic lamina or ply. 

 

Appendix (B) 

The elements of the stiffness matrix  
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The elements of the mass matrix: 
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