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ABSTRACT 

 

In this study, the effect of the end conditions of cross-ply laminated composite beams (CLCB) on their non-

dimensional natural frequencies of free vibration was investigated. The problem is analyzed and solved using the 

energy approach which is formulated by a finite element model. In that model, a three-noded element with three 

degrees of freedom at each node is assumed. Numerical results were verified by comparisons with other relevant 

works. The end conditions of beams are: clamped -free (CF), hinged -hinged (HH), clamped -clamped (CC), hinged -

clamped (HC), hinged -free (HF), free -free (FF). Each beam has either movable ends or immovable ends. It is found 

that the more constrained beams have the higher values of natural frequencies of transverse vibration. However, the 

free-free and hinged-free beams are found to have the highest frequencies of transverse vibration amongst all beams 

although they look less constrained. This behavior is due to the fact that the first mode of the two beams is equal zero 

(rigid body motion), and replaced by the second mode to be the fundamental mode. The values of the natural 

frequencies of longitudinal modes are found to be the same for all beams with movable ends since they are generated 

by longitudinal movements only. But for immovable ends, the clamped-free and hinged-free beams have equal 

frequencies in longitudinal vibration, and those of the other beams are also the same. 

Keywords: Finite Element Method, End Conditions, Cross Ply Laminates, First Order Shear Deformation, Natural 

Frequencies. 
 

1. INTRODUCTION 

Cross-ply laminated composite beams (CLCB) are those having alternating layers of material bonded together in some manner, 

and found in many of the products used in our day-to-day lives, like cars, boats, machines. Additionally, they are used in many 

critical industrial, aerospace and military applications. The benefits of composites have fueled growth of new applications in 
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markets such as transportation, construction, corrosion-resistance, marine, infrastructure, consumer products, electrical, aircraft 

and business equipment's[1], [2], [3], [4], [5], [6] and [7].   

It is very important to estimate the values of natural frequencies of CLCB in order to avoid failure by avoiding resonance when 

these beams subjected to dynamic loads. Usually the non-dimensionalized frequencies are computed and can then be applied for 

any beam size. Many parameters are affecting the values of natural frequency; one of them is the end conditions. The first-order 

shear deformation theory was used by Teboub and Hajela [8] to analyze the free vibration of generally layered composite beams. 

Banerjee J.R. [9] applied an exact solution to predict the frequency equations and mode shapes of free vibration of laminated 

composite beams. Also, Abramovich and Livshits [10] presented exact solutions for the free vibration of non-symmetrically 

laminated cross-ply composite beams. A beam finite element based on layer wise trigonometric shear deformation theory is 

presented by Shimpi R.P., and Ainapure A.V. [11]. A free vibration analysis of fiber-reinforced composite beams was carried out 

by Marur S.R. and Kant T. [12]. The authors applied the higher-order theories and finite element method to predict the values of 

natural frequencies of laminated composite beams.    

2. MATERIAL AND GEOMETRY 

 

AS/3501-6 graphite-epoxy material was used for all numerical results because of its wide applications in modern industries. The 

mechanical properties of this material are tabulated in Table 1.  

Table 1Mechanical Properties of AS/3501-6 graphite-epoxy material 

Property Magnitude 

E1 145 GN/m2 

E2 9.6 GN/m2 

G12 4.1 GN/m2 

G13 4.1 GN/m2 

G23 3.4 GN/m2 

Poisson’s ratio    0.3 

Density    1520 kg/m3 

 

Figure 1 below shows the geometry of a beam drawn in the three dimensions X, Y, and Z or 1, 2, and 3. 

 

 

 

 

 

 

 

Figure 1 The geometry of a laminated composite beam. 

 

3. MATHEMATICAL FORMULATIONS 

 

The time-dependent axial and transverse displacements fields are: 
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Where, u  and w  are the axial and transverse displacements at the mid-plane, z  is the perpendicular distance from the mid-plane 

to the layer plane,   is the rotation of a plane after deformation, and t  is the time. The strain- displacement relations are:                               














































x

w

z

U

x

W

x
z

x

u

x

U

5

1                          

                                          (2) 

Where the subscripts have the same meanings as those used in 3-D elasticity formulation, i.e. 1  is the axial or longitudinal strain, 

and 5  is the through-thickness shear strain. The stress-strain relationship of a lamina can be shown as: 

    iiji C                                                                  (3) 
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The elastic constants  11C  and  55C  for orthotropic beams can be expressed as: 
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Where;   1121221212135523441266 C CC  ;C ;C  ;   GGGC         (6) 

 

4. FINITE ELEMENT MODELING  

Applying the energy approach for the beam element shown in Figure 2, the strain energy stored is given by: 

   
e

T
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Where, bdxdzdV   and the subscript, e, means one element 
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Figure 2, A 3-noded finite element with nine degrees of freedom and shape functions. 

Also, the kinetic energy is found as follows; 

 


















e

dzdxU
t

U
W

t

W
bEK     

2

1
..

2

2

2

2

                                 (8) 

The degrees of freedom at each node are; the axial displacement u, deflection w, and rotation , and can be written in terms of 

their nodal values as follows: 
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Where, iN
 is shape function and assumed as a second-order polynomial as: 

2xcxbaN iiii   3,2,1i
                (10) 

The constants ia
, ib

 and ic
 can be computed for each element from the following data: 
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Equations (7), and (8) leads to the final form of the non-dimensional element stiffness and inertia matrices [K]
e
, and [M]

e
 

respectively. These individual element stiffness and inertia matrices must be linked together or assembled to form the global 

matrices and to characterize the unified behavior of the entire beam. Therefore, the global stiffness and inertia matrices are given 

respectively by, 
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Where, N is the total number of beam elements. 

The beam end conditions which considered are; (1) Clamped-free beam (CF), (2) Hinged-hinged beam (HH), (3) Clamped-

clamped beam (CC), (4) Hinged-clamped beam (HC), (5) Hinged-free beam (HF), and (6) Free-free beam (FF). Each beam has 

either movable ends or immovable ends. In the former group, the axial displacement at both beam-ends is considered, while 

neglected for the latter group.  
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The solution can be obtained after the incorporation of ends conditions which will modify both stiffness and inertia matrices. 

Thus, the non-dimensional natural frequencies can be determined from the relation: 

    021



IKM                                                       (13) 

Where, I is an identity matrix, and   is the non-dimensionalized natural frequencies, which can be computed by computing the 

square root of the eigenvalues of the matrix    KM
1

 using a suitable computer program (Here MATLAB was used). 

5. METHOD VALIDITY 

In order to check the validity of the present method, some comparisons were performed. These comparisons were selected to 

cover the cases of symmetrically and non-symmetrically laminated beams. Table 2 presents a comparison with Abramovich and 

Livshits [10] of the non-dimensional frequencies of symmetric [0/90/90/0] cross-ply graphite-epoxy beams for aspect ratio of (L/h 

= 10). The end conditions considered are hinged-hinged, fixed-free, and fixed-fixed with immovable ends. Here, the authors 

introduced the secondary effect of coupling between bending and torsion in their analysis, which is small, compared with the other 

secondary effects. For the hinged-hinged beam, a percentage difference of less than 0.16% was recorded for the fundamental 

frequency, and less than 0.54% for both fixed-free and fixed-fixed beams. This difference was observed to increase as the mode 

order increases (less than 1.4%) for the seventh mode for all beams considered.   

Table 2Non-dimensional frequencies [
2

1

2. hEL   ] of symmetric [0/ 90/ 90/ 0]  

cross-ply beams (L/h = 10) 

Mode 

No. 

 

. 

Hinged-hinged 

(Immovable) 

Fixed-free 

(Immovable) 

Fixed-fixed 

(Immovable) 
Present Ref. [10] Present Ref. [10] Present Ref. [10] 

1 2.3157 2.3194 0.8866 0.8819 3.6855 3.7576 

2 6.9813 7.0029 4.1062 4.0259 7.7244 7.8718 

3 12.004 12.037 8.9536 9.1085 12.381 12.573 

4 17.010 17.015 11.504* 12.193* 17.192 17.373 

5 22.015 21.907 13.924 14.080 22.119 22.200 

6 23.007* 23.007* 18.980 18.980 23.007* 23.007* 

7 27.094 27.094 24.037 24.037 27.125 27.125 

 

(*) Modes with predominance of longitudinal vibration. 

Another comparison was carried out with the results of Marur and Kant [12]. Table 3 compares the first six modes of the non-

dimensionalized frequencies [
2

1

2. hEL   ] of symmetric [ 0/90/90/0 ] cross-ply, graphite-epoxy, clamped-free 

beam with aspect ratio of (L/h = 15). 

Table 3Non-dimensional natural frequencies [
2

1

2. hEL   ] of   symmetric [ 0/90/90/0  ] cross-ply clamped- 

free beam. (L/h = 15). 

Mode No. Present Ref. [12] 

1 0.9238 0.924 

2 4.8886 4.985 

3 11.4556 11.832 

4 17.2550* - 

5 18.8481 19.573 
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6 26.7793 27.720 

 

(*) Modes with predominance of longitudinal vibration. 

The authors applied the higher-order shear deformation theory (HOSDT) in the analysis, whereas, the present method uses first-

order shear deformation theory. The comparison shows a percentage difference of less than 0.03% for the fundamental mode of 

vibration. This difference increases with the mode order to less than 3.6% for the sixth mode. 

6. NUMERICAL RESULTS AND DISCUSSIONS 

 

Table 4 shows the first ten modes of free vibration of CLCB with immovable ends (i.e. axial movement is restricted), while table 

5 shows those for movable ends. Generally, it is found that more constrained beams have high values of natural frequencies. 

However, the free-free and hinged-free beams are found to have the highest frequencies amongst all beams although they look less 

constrained. This behavior is due the fact that the first mode of the two beams is equal zero and replaced by the second mode. The 

fundamental mode shapes of both beams are straight lines, Figure 3, and this due to the rigid motion in this mode where there is 

no vibrating motion. 

Table 4Non-dimensional natural frequencies  2

1

4 hEL   of a symmetric cross-ply 

[90/-90/-90/90] laminated beam with immovable ends, (L/h = 10). 

Mode 

No. 

Beam type 

CF HH CC HC HF FF 

1 0.2597 0.7224 1.5544 1.1020 1.1184 1.6077 

2 1.5522 2.7525 3.9654 3.3519 3.4324 4.1694 

3 4.0539* 5.7774 7.1377 6.4646 4.0539* 7.5785 

4 4.0677 8.1077* 8.1077* 8.1077* 6.6580 8.1077* 

5 7.3503 9.4753 10.8006 10.1515 10.4868 11.5233 

6 11.1503 13.5995 14.7896 14.2085 12.1616* 15.7969 

7 12.1616* 16.2155* 16.2155* 16.2155* 14.6913 16.2155* 

8 15.2783 17.9847 18.9972 18.5027 19.1205 20.2606 

9 19.6134 22.5259 23.3543 22.9488 20.2694* 24.3234* 

10 20.2694* 24.3234* 24.3234* 24.3234* 23.6776 24.8245 

 

(*) Modes with predominance of longitudinal vibration. 

Also, it can be observed from the results in tables 4 and 5 that the values of the non-dimensionalized natural frequencies of the 

transverse modes are not affected by the longitudinal movements of the ends since these modes are generated by lateral 

movements only. However, the values of the natural frequencies of longitudinal modes are found to be the same for all beams 

with movable ends since they are generated by longitudinal movements only. It could be noticed that the values of non-

dimensionalized natural frequencies of the longitudinal vibration for the clamped-free (CF) and hinged-free (HF) beams are equal, 

and those of the other beams are also the same. This phenomenon occurs since both clamped-free and hinged-free beams with 

immovable ends are the same when restricted from executing longitudinal motion at the ends. Similarly, the rest of beams with 

immovable ends have the same longitudinal end conditions.  
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Table 5  Non-dimensional natural frequencies  2

1

4 hEL   of a symmetric cross-ply 

[90/-90/-90/90] laminated beam with movable ends, (L/h = 10). 

Mode No. CF HH CC HC HF FF 

1 0.2597 0.7224 1.5544 1.1020 1.1184 1.6077 

2 1.5522 2.7525 3.9654 3.3519 3.4324 4.1694 

3 4.0677 5.7774 7.1377 6.4646 6.6580 7.5785 

4 7.3503 8.1077* 8.1077* 8.1077* 8.1077* 8.1077* 

5 8.1077* 9.4753 10.8006 10.1515 10.4868 11.5233 

6 11.1503 13.5995 14.7896 14.2085 14.6913 15.7969 

7 15.2783 16.2155* 16.2155* 16.2155* 16.2155* 16.2155* 

8 16.2155* 17.9847 18.9972 18.5027 19.1205 20.2606 

9 19.6134 22.5259 23.3543 22.9488 23.6776 24.3234* 

10 24.0758 24.3234* 24.3234* 24.3234* 24.3234* 24.8245 

 

(*) Modes with predominance of longitudinal vibration. 

 

7. CONCLUSIONS  

In the present study, the effects of end conditions of CLCB on their non-dimensionalized natural frequencies are studied. The 

problem is modeled and analyzed by the finite element method. Twelve end conditions were studied which are clamped-free, 

hinged-hinged, clamped-clamped, hinged-clamped, hinged-free, and free-free beams with immovable and movable ends. It is 

found that more constrained beams have high values of natural frequencies. However, the free-free and hinged-free beams are 

found to have the highest frequencies amongst all beams although they look less constrained. The transverse modes are not 

affected by the longitudinal movements of the ends since these modes are generated by lateral movements only. The values of the 

natural frequencies of longitudinal modes are found to be the same for all beams with movable ends since they are generated by 

longitudinal movements only. But for immovable ends, the clamped-free and hinged-free beams have equal frequencies in 

longitudinal vibration, and those of the other beams are also the same. 
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