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Preface 

The objective of this book is to present a complete and up to date treatment of 

uniform cross section rectangular laminated plates on buckling. Finite element (FE) 

method is used for solving governing equations of thin laminated composite plates 

and their solution using classical laminated plate theory (CLPT). Plates are common 

structural elements of most engineering structures, including aerospace, automotive, 

and civil engineering structures, and their study from theoretical and experimental 

analyses points of view is fundamental to the understanding of the behavior of such 

structures. 

The motivation that led to the writing of the present study has come from many 

years of studying classical laminated plate theory (CLPT) and its analysis by the 

finite element (FE) method, and also from the fact that there does not exist a 

publication that contains a detailed coverage of classical laminated plate theory and 

finite element method in one volume. The present study fulfills the need for a 

complete treatment of classical laminated theory of plates and its solution by a 

numerical solution. 

The material presented is intended to serve as a basis for a critical study of the 

fundamentals of elasticity and several branches of solid mechanics including 

advanced mechanics of materials, theories of plates, composite materials and 

numerical methods. Chapter one includes certain properties of laminated composite 

plates, and at the end of this chapter the most important objectives of the present 

book are cited, this subject may be used either as a required reading or as a reference 

subject. Developments in the theories of laminated plates, several numerical methods 

and the past work of buckling analysis are presented in chapter two. Mathematical 

formulations and numerical modeling of rectangular laminated plates under biaxial 

buckling loads are introduced in chapter three. The present finite element (FE) results 

are validated with similar results generated by FE and/ or other numerical and 

approximate analytical solutions in chapter four. Additional verification with ANSYS 
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package and experimental results has been done in this chapter. In chapter five, the 

effects of lamination scheme, aspect ratio, material anisotropy, fiber orientations of 

layers, reversed lamination scheme and boundary conditions are investigated. In 

chapter six, the most important results have been summarized. 

The present study is suitable as a textbook for an advanced course on theories of 

plates and finite element techniques in mechanical and civil engineering curricula. It 

can be used also as a reference by engineers and scientists working in industry and 

academic institutions. 
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CHAPTER (1) 

Introduction 

1.1 General Introduction  

Composites were first considered as structural materials a little more than three 

quarters of a century ago. From that time to now, they have received increasing 

attention in all aspects of material science, manufacturing technology, and theoretical 

analysis. 

The term composite could mean almost anything if taken at face value, since 

all materials are composites of dissimilar subunits if examined at close enough 

details. But in modern materials engineering, the term usually refers to a matrix 

material that is reinforced with fibers. For instance, the term "FRP" which refers to 

Fiber Reinforced Plastic usually indicates a thermosetting polyester matrix containing 

glass fibers, and this particular composite has the lion's share of today commercial 

market. 

 Many composites used today are at the leading edge of materials technology, 

with performance and costs appropriate to ultra-demanding applications such as 

space crafts. But heterogeneous materials combining the best aspects of dissimilar 

constituents have been used by nature for million of years. Ancient societies, 

imitating nature, used this approach as well: The book of Exodus speaks of using 

straw to reinforce mud in brick making, without which the bricks would have almost 

no strength. Here in Sudan, people from ancient times dated back to Meroe 

civilization, and up to now used zibala (i e  animals’ dung) mixed with mud as a 

strong building material. 

 As seen in table (1.1) below, which is cited by David Roylance [1], Stephen et 

al. [2] and Turvey et al. [3], the fibers used in modern composites have strengths and 

stiffnesses far above those of traditional structural materials. The high strengths of the 

glass fibers are due to processing that avoids the internal or external textures flaws 



2 

 

which normally weaken glass, and the strength and stiffness of polymeric aramid 

fiber is a consequence of the nearly perfect alignment of the molecular chains with 

the fiber axis.   

Table (1.1) Properties of composite reinforcing fibers  

Material 
E 

(GN/m
 
) 

b  

(GN/m
 
) 

b  

(%) 

  

(Mg/m
 
) 

/E  

(MN.m/kg) 

 /b  

(MN.m/kg) 

E-glass                             

S-glass                            

Aramid                         

Boron                           

H S 

graphite 
                         

H M 

graphite 
                         

 

Where E is Young's modulus, 
b  is the breaking stress, 

b   is the breaking strain, and 

  is the mass density. 

These materials are not generally usable as fibers alone, and typically they are 

impregnated by a matrix material that acts to transfer loads to the fibers, and also to 

protect the fibers from abrasion and environmental attack. The matrix dilutes the 

properties to some degree, but even so very high specific (weight – adjusted) 

properties are available from these materials. Polymers are much more commonly 

used, with unsaturated Styrene – hardened polyesters having the majority of low to 

medium performance applications and Epoxy or more sophisticated thermosets 

having the higher end of the market. Thermoplastic matrix composites are 

increasingly attractive materials, with processing difficulties being perhaps their 

principal limitation. 
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Recently, composite materials are increasingly used in many mechanical, civil, 

and aerospace engineering applications due to two desirable features: the first one is 

their high specific stiffness (stiffness per unit density) and high specific strength 

(strength per unit density), and the second is their properties that can be tailored 

through variation of the fiber orientation and stacking sequence which gives the 

designers a wide spectrum of flexibility. The incorporation of high strength, high 

modulus and low-density filaments in a low strength and a low modulus matrix 

material is known to result in a structural composite material with a high strength to 

weight ratio. Thus, the potential of a two-material composite for use in aerospace, 

under-water, and automotive structures has stimulated considerable research activities 

in the theoretical prediction of the behavior of these materials. One commonly used 

composite structure consists of many layers bonded one on top of another to form a 

high-strength laminated composite plate. Each lamina is fiber reinforced along a 

single direction, with adjacent layers usually having different filament orientations. 

For these reasons, composites are continuing to replace other materials used in 

structures such as conventional materials. In fact, composites are the potential 

structural materials of the future as their cost continues to decrease due to the 

continuous improvements in production techniques and the expanding rate of sales.    

1.2 Structure of Composites 

 There are many situations in engineering where no single material will be 

suitable to meet a particular design requirement. However, two materials in 

combination may possess the desired properties and provide a feasible solution to the 

materials selection problem. A composite can be defined as a material that is 

composed of two or more distinct phases, usually a reinforced material supported in a 

compatible matrix, assembled in prescribed amounts to achieve specific physical and 

chemical properties.   

In order to classify and characterize composite materials, distinction between 

the following two types is commonly accepted; see Vernon [4], Jan Stegmann and 

Erik Lund [5], and David Roylance [1]. 
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1. Fibrous composite materials:  Which are composed of high strength fibers 

embedded in a matrix.  The functions of the matrix are to bond the fibers together to 

protect them from damage, and to transmit the load from one fiber to another. {See 

Fig. (1.1)}. 

   Particulate composite materials: These are composed of particles encased within 

a tough matrix, e.g. powders or particles in a matrix like ceramics. 

 

Fig. (1.1) Structure of a fibrous composite 

In this study the focus will be on fiber reinforced composite materials, as they 

are the basic building element of a rectangular laminated plate structure. Typically, 

such a material consists of stacks of bonded-together layers (i.e. laminas or plies) 

made from fiber reinforced material. The layers will often be oriented in different 

directions to provide specific and directed strengths and stiffnesses of the laminate. 

Thus, the strengths and stiffnesses of the laminated fiber reinforced composite 

material can be tailored to the specific design requirements of the structural element 

being built. 

1.2.1 Mechanical Properties of a Fiber Reinforced Lamina 

               Composite materials have many mechanical characteristics, which are 

different from those of conventional engineering materials such as metals. More 

precisely, composite materials are often both inhomogeneous and non-isotropic. 

Therefore, and due to the inherent heterogeneous nature of composite materials, they 

can be studied from a micromechanical or a macro mechanical point of view. In 

micromechanics, the behavior of the inhomogeneous lamina is defined in terms of the 
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constituent materials; whereas in macro mechanics the material is presumed 

homogeneous and the effects of the constituent materials are detected only as 

averaged apparent macroscopic properties of the composite material. This approach is 

generally accepted when modeling gross response of composite structures. The 

micromechanics approach is more convenient for the analysis of the composite 

material because it studies the volumetric percentages of the constituent materials for 

the desired lamina stiffnesses and strengths, i.e. the aim of micromechanics is to 

determine the moduli of elasticity and strength of a lamina in terms of the moduli of 

elasticity, and volumetric percentage of the fibers and the matrix. To explain further, 

both the fibers and the matrix are assumed homogeneous, isotropic and linearly 

elastic. 

1.2.1.1 Stiffness and Strength of a Lamina 

The fibers may be oriented randomly within the material, but it is also possible 

to arrange for them to be oriented preferentially in the direction expected to have the 

highest stresses. Such a material is said to be anisotropic (i.e. different properties in 

different directions), and control of the anisotropy is an important means of 

optimizing the material for specific applications. At a microscopic level, the 

properties of these composites are determined by the orientation and distribution of 

the fibers, as well as by the properties of the fiber and matrix materials. 

Consider a typical region of material of unit dimensions, containing a volume 

fraction, Vf of fibers all oriented in a single direction. The matrix volume fraction is 

then, fm VV 1  . This region can be idealized by gathering all the fibers together, 

leaving the matrix to occupy the remaining volume. If a stress 
l  is applied along the 

fiber direction, the fiber and matrix phases act in parallel to support the load. In these 

parallel connections the strains in each phase must be the same, so the strain l  in 

the fiber direction can be written as: 

mfl                                                             (   ) 

(Where: the subscripts L, f and m denote the lamina, fibers and matrix respectively). 
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The forces in each phase must add to balance the total load on the material. Since the 

forces in each phase are the phase stresses times the area (here numerically equal to 

the volume fraction), we have  

                                mlmflfmmffl VEVEVV                                   (   ) 

The stiffness in the fiber direction is found by dividing the stress by the strain: 

                                
mmff

l

l

l VEVEE 



                                              (   ) 

(Where: E is the longitudinal Young's modulus)  

This relation is known as a rule of mixtures prediction of the overall modulus in 

terms of the moduli of the constituent phases and their volume fractions. 

 Rule of mixtures estimates for strength proceed along lines similar to those for 

stiffness. For instance, consider a unidirectional reinforced composite that is strained 

up to the value at which the fiber begins to fracture. If the matrix is more ductile than 

the fibers, then the ultimate tensile strength of the lamina in equation (1.2) will be 

transformed to: 

                                     
f

f

mf

u

f

u

l VV  1                                                       (   ) 

Where the superscript u denotes an ultimate value, and f

m  is the matrix stress when 

the fibers fracture as shown in Fig. (1.2). 

 

Fig. (1.2) Stress-strain relationships for fiber and matrix 
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It is clear that if the fiber volume fraction is very small, the behavior of the lamina is 

controlled by the matrix.  

This can be expressed mathematically as follows: 

                                      
f

u

m

u

l V 1                                                        (   ) 

If the lamina is assumed to be useful in practical applications, then there is a 

minimum fiber volume fraction that must be added to the matrix. This value is 

obtained by equating equations (1.4) and (1.5) i.e. 

                              
f

m

u

m

u

f

f

m

u

m

minV 







                                                    (   ) 

The variation of the strength of the lamina with the fiber volume fraction is 

illustrated in Fig. (   ). It is obvious that when           the strength of the 

lamina is dominated by the matrix deformation which is less than the matrix strength. 

But when the fiber volume fraction exceeds a critical value (i.e. Vf > VCritical ), Then the 

lamina gains some strength due to the fiber reinforcement. 

 

Fig. (1.3) Variation of unidirectional lamina strength with the fiber volume 

fraction 

 



8 

 

 The micromechanical approach is not responsible for the many defects which 

may arise in fibers, matrix, or lamina due to their manufacturing. These defects, if 

they exist include misalignment of fibers, cracks in matrix, non-uniform distribution 

of the fibers in the matrix, voids in fibers and matrix, delaminated regions, and initial 

stresses in the lamina as a result of its manufacture and further treatment.  The above-

mentioned defects tend to propagate as the lamina is loaded causing an accelerated 

rate of failure. The experimental and theoretical results in this case tend to differ. 

Hence, due to the limitations necessary in the idealization of the lamina components, 

the properties estimated on the basis of micromechanics should be proved 

experimentally. The proof includes a very simple physical test in which the lamina is 

considered homogeneous and orthotropic. In this test, the ultimate strength and 

modulus of elasticity in a direction parallel to the fiber direction can be determined 

experimentally by loading the lamina longitudinally. When the test results are plotted, 

as in Fig. (1.4) below, the required properties may be evaluated as follows: - 

1212111 /    ;    /   ;   /    APE uu  

 

Fig. (1.4) Unidirectional lamina loaded in the fiber-direction 
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Similarly, the properties of the lamina in a direction perpendicular to the fiber 

direction can be evaluated in the same procedure. 

        Analytical Modeling of Composite Laminates 

 

 The properties of a composite laminate depend on the geometrical arrangement 

and the properties of its constituents. The exact analysis of such structure – property 

relationship is rather complex because of many variables involved. Therefore, a few 

simplifying assumptions regarding the structural details and the state of stress within 

the composite have been introduced. 

  It has been observed, that the concept of representative volume element and 

the selection of appropriate boundary conditions are very important in the discussion 

of micromechanics. The composite stress and strain are defined as the volume 

averages of the stress and strain fields, respectively, within the representative volume 

element. By finding relations between the composite stresses and the composite 

strains in terms of the constituent properties expressions for the composite moduli 

could be derived. In addition, it has been shown that, the results of advanced methods 

can be put in a form similar to the rule of mixtures equations. 

 Prediction of composite strengths is rather difficult because there are many 

unknown variables and also because failure critically depends on defects. However, 

the effects of constituents including fiber – matrix interface on composite strengths 

can be qualitatively explained. Certainly, failure modes can change depending on the 

material combinations.  Thus, an analytical model developed for one material 

combination cannot be expected to work for a different one. Ideally a truly analytical 

model will be applicable to material combination. However, such an analytical model 

is not available at present. Therefore, it has been chosen to provide models each of 

which is applicable only to a known failure mode. Yet, they can explain many of the 

effects of the constituents. (Refer to Ref. [2]). 
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1.3 The Objectives of The Present Study 

 The present work involves a comprehensive study of the following objectives, 

which have been achieved over a period of five years: 

   A survey of various plate theories and techniques used to predict the response of 

laminated plates under buckling loads. 

   The development of a theoretical model capable of predicting buckling loads in a 

thin laminated plate. 

   The development and application of the finite element technique for the analysis 

of rectangular laminated plates subjected to a buckling load. 

   Investigation of the accuracy of the theoretical model through a wide range of 

theoretical and experimental comparisons. 

   Further investigations on the influence of coupling between bending and 

extension and/or twisting on the response of laminated plates could be carried out. 

   Generation of new results based on classical laminated plate theory (CLPT). 
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Chapter (2) 

Literature Review   

2.1 Developments in The Theories of Laminated Plates 

 From the point of view of solid mechanics, the deformation of a plate subjected 

to transverse and / or in plane loading consists of two components: flexural 

deformation due to rotation of cross – sections, and shear deformation due to sliding 

of section or layers. The resulting deformation depends on two parameters: the 

thickness to length ratio and the ratio of elastic to shear moduli. When the thickness 

to length ratio is small, the plate is considered thin, and it deforms mainly by flexure 

or bending; whereas when the thickness to length and the modular ratios are both 

large, the plate deforms mainly through shear. Due to the high ratio of in – plane 

modulus to transverse shear modulus, the shear deformation effects are more 

pronounced in the composite laminates subjected to transverse and / or in – plane 

loads than in the isotropic plates under similar loading conditions. 

 The three – dimensional theories of laminates, in which each layer is treated as 

homogeneous anisotropic medium, (see Reddy [6]) are intractable. Usually, the 

anisotropy in laminated composite structures causes complicated responses under 

different loading conditions by creating complex couplings between extensions and 

bending, and shears deformation modes. Expect for certain cases, it is inconvenient to 

fully solve a problem in three dimensions due to the complexity, size of computation, 

and the production of unnecessary data specially for composite structures. 

Many theories which account for the transverse shear and normal stresses are 

available in the literature (see, for example Mindlin [7]). These are too numerous to 

review here. Only some classical papers and those which constitute a background for 

the present book will be considered. These theories are classified according to Phan 

and Reddy [8] into two major classes on the basis of the assumed fields as: (1) stress 

based theories, and (2) displacement based theories. The stress – based theories are 
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derived from stress fields which are assumed to vary linearly over the thickness of the 

plate: 

   
   1.26,2,1

26

2
 i

h

z

h

M i

i  

(Where 
iM  is the stress couples, h is the plate thickness, and z is the distance of the 

lamina from the plate mid – plane). 

The displacement – based theories are derived from an assumed displacement field 

as: 

.....3

3

2

2

1  uzuzuzuu   

.....3

3

2

2

1  vzvzvzvv   

....3

3

2

2

1  wzwzwzww   

Where: u  , v  and w are the displacements of the middle plane of the plate. The 

governing equations are derived using principle of minimum total potential energy. 

The theory used in the present work comes under the class of displacement – based 

theories. Extensions of these theories which include the linear terms in z  in u  and v

and only the constant term in w , to account for higher – order variations and to 

laminated plates, can be found in the work of Yang, Norris and Stavsky [9] , Whitney 

and Pagano [10] and Phan and Reddy [8]. 

 Based on different assumptions for displacement fields, different theories for 

plate analysis have been devised. These theories can be divided into three major 

categories, the individual layer theories (IL), the equivalent single layer (ESL) 

theories, and the three-dimensional elasticity solution procedures. These categories 

are further divided into sub – theories by the introduction of different assumptions. 

For example, the second category includes the classical laminated plate theory 

(CLPT), the first order and higher order shear deformation theories (FSDT and 

HSDT) as stated in Refs. {[11] –        

(2.2) 
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 In the individual layer laminate theories, each layer is considered as a separate 

plate. Since the displacement fields and equilibrium equations are written for each 

layer, adjacent layers must be matched at each interface by selecting appropriate 

interfacial conditions for displacements and stresses. In the ESL laminate theories, 

the stress or the displacement field is expressed as a linear combination of unknown 

functions and the coordinate along the thickness. If the in – plane displacements are 

expanded in terms of the thickness co – ordinate up to the n
th

 power, the theory is 

named n
th

 order shear deformation theory. The simplest ESL laminate theory is the 

classical laminated plate theory (CLPT). This theory is applicable to homogeneous 

thin plates (i.e. the length to thickness ratio a / h > 20). The classical laminated plate 

theory (CLPT), which is an extension of the classical plate theory (CPT) applied to 

laminated plates was the first theory formulated for the analysis of laminated plates 

by Reissner and Stavsky [15] in 1961 , in which the Kirchhoff and Love assumption 

that normal to the mid – surface before deformation remain straight and normal to the 

mid – surface after deformation is used (see Fig.(2.1)) , but it is not adequate for the 

flexural analysis of moderately thick laminates. However, it gives reasonably 

accurate results for many engineering problems i.e. thin composite plates, as stated by 

Srinivas and Rao [16], Reissner and Stavsky [15]. This theory ignores the transverse 

shear stress components and models a laminate as an equivalent single layer. The 

classical laminated plate theory (CLPT) under – predicts deflections as proved by 

Turvey and Osman [17], [18], [19] and Reddy [6] due to the neglect of transverse 

shear strain. The errors in deflection are even higher for plates made of advanced 

filamentary composite materials like graphite – epoxy and boron – epoxy whose 

elastic modulus to shear modulus ratios are very large (i.e. of the order of 25 to 40, 

instead of 2.6 for typical isotropic materials). However, these composites are 

susceptible to thickness effects because their effective transverse shear moduli are 

significantly smaller than the effective elastic modulus along the fiber direction. This 

effect has been confirmed by Pagano [20] who obtained analytical solutions of 

laminated plates in bending based on the three – dimensional theory of elasticity. He 

proved that classical laminated plate theory (CLPT) becomes of less accuracy as the 
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side to thickness ratio decreases. In particular, the deflection of a plate predicted by 

CLPT is considerably smaller than the analytical value for side to thickness ratio less 

than 10. These high ratios of elastic modulus to shear modulus render classical 

laminate theory as inadequate for the analysis of composite plates. In the first order 

shear deformation theory (FSDT), the transverse planes, which are originally normal 

and straight to the mid – plane of the plate, are assumed to remain straight but not 

necessarily normal after deformation, and consequently shear correction factors are 

employed in this theory to adjust the transverse shear stress, which is constant 

through thickness (see Fig. (2.1)). Recently Reddy [6] and Phan and Reddy [8] 

presented refined plate theories that used the idea of expanding displacements in the 

powers of thickness coordinate. The main novelty of these works is to expand the in – 

plane displacements as cubic functions of the thickness coordinate, treat the 

transverse deflection as a function of the x  and y coordinates, and eliminate the 

functions 
2u  , 

3u , 
2v  and 

3v from equation (2.2) by requiring that the transverse shear 

stress be zero on the bounding planes of the plate. Numerous studies involving the 

application of the first – order theory to bending, vibration and buckling analyses can 

be found in the works of Reddy [20], and Reddy and Chao [21].  

 In order to include the curvature of the normal after deformation, a number of 

theories known as higher – order shear deformation theories (HSDT) have been 

devised in which the displacements are assumed quadratic or cubic through the 

thickness of the plate. In this aspect, a variationally consistent higher – order theory 

which not only accounts for the shear deformation but also satisfies the zero 

transverse shear stress conditions on the top and bottom faces of the plate and does 

not require correction factors was suggested by Reddy [6]. Reddy's modifications 

consist of a more systematic derivation of displacement field and variationally 

consistent derivation of the equilibrium equations. 
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Fig. (2.1) Assumed deformation of the transverse normal in various 

displacement base plate theories 
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The refined laminate plate theory predicts a parabolic distribution of the transverse 

shear stresses through the thickness, and requires no shear correction coefficients. 

 In the non – linear analysis of plates considering higher – order shear 

deformation theory (HSDT), shear deformation has received considerably less 

attention compared with linear analysis. This is due to the geometric non – linearity 

which arises from finite deformations of an elastic body and which causes more 

complications in the analysis of composite plates. Therefore, fiber – reinforced 

material properties and lamination geometry have to be taken into account. In the 

case of anti – symmetric and unsymmetrical laminates, the existence of coupling 

between stretching and bending complicates the problem further. Non – linear 

solutions of laminated plates using higher – order theories have been obtained 

through several techniques, i. e. perturbation method as in Ref. [22], finite element 

method as in Ref. [23], the increment of lateral displacement method as in Ref. [24], 

and the small parameter method as in Ref. [25]. 

           In the present work, the analysis uses the classical laminated plate theory 

(CLPT) which does not account for transverse shear deformations. In this theory it is 

assumed that the laminate is in a state of plane stress, the individual lamina is linearly 

elastic, and there is perfect bonding between layers. The classical laminated plate 

theory assumes that normal to the mid – surface before deformation remains straight 

and normal to the mid – surface after deformation. Therefore, this theory is adequate 

for buckling analysis of thin laminates. A Fortran program has been compiled the 

convergence and accuracy of the FE solutions for biaxial buckling of thin laminated 

rectangular plates are established by comparison with various theoretical and 

experimental solutions and new numerical results are generated.     

2.2 Numerical Techniques 

Several numerical methods could be used in this study, but the main ones are 

finite difference method (FDM), dynamic relaxation coupled with finite difference 

method (DR), and finite element method (FEM). 
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In the finite difference method, the solution domain is divided into a grid of 

discrete points or nodes. The partial differential equation is then written for each node 

and its derivatives are replaced by finite divided differences. Although such point – 

wise approximation is conceptually easy to understand, it becomes difficult to apply 

for system with irregular geometry, unusual boundary conditions, and heterogeneous 

composition. 

 The DR method was first proposed in 1960
th

; see Rushton [26], Cassel and 

Hobbs [27], and Day [28]. In this method, the equations of equilibrium are converted 

to dynamic equations by adding damping and inertia terms. These are then expressed 

in finite difference form and the solution is obtained through iterations. The optimum 

damping coefficient and the time increment used to stabilize the solution depend on 

the stiffness matrix of the structure, the applied load, the boundary conditions and the 

size of mesh used. 

 In the present work, a numerical method known as finite element method 

(FEM) is used. It is a numerical procedure for obtaining solutions to many of the 

problems encountered in engineering analysis. It has two primary subdivisions. The 

first utilizes discrete elements to obtain the joint displacements and member forces of 

a structural framework. The second uses the continuum elements to obtain 

approximate solutions to heat transfer, fluid mechanics, and solid mechanics problem. 

The formulation using the discrete element is referred to as matrix analysis of 

structures and yields results identical with the classical analysis of structural 

frameworks. The second approach is the true finite element method. It yields 

approximate values of the desired parameters at specific points called nodes. A 

general finite element computers program, however, is capable of solving both types 

of problems and the name" finite element method" is often used to denote both the 

discrete element and the continuum element formulations. 

 The finite element method combines several mathematical concepts to produce 

a system of linear and non – linear equations. The number of equations is usually 
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very large, anywhere from 20 to 20,000 or more and requires the computational 

power of the digital computer. 

 It is impossible to document the exact origin of the finite element method 

because the basic concepts have evolved over a period of 150 or more years. The 

method as we know it today is an outgrowth of several papers published in the 1950
th

 

that extended the matrix analysis of structures to continuum bodies. The space 

exploration of the 1960
th

 provided money for basic research, which placed the 

method of a firm mathematical foundation and stimulated the development of multi – 

purpose computer programs that implemented the method. The design of airplanes, 

unmanned drones, missiles, space capsules, and the like, provided application areas. 

 The finite element method (FEM) is a powerful numerical method, which is 

used as a computational technique for the solution of differential equations that arise 

in various fields of engineering and applied sciences. The finite element method is 

based on the concept that one can replace any continuum by an assemblage of simply 

shaped elements, called finite elements with well-defined force, displacement, and 

material relationships. While one may not be able to derive a closed – form solution 

for the continuum, one can derive approximate solutions for the element assemblage 

that replaces it. The approximate solutions or approximation functions are often 

constructed using ideas from interpolation theory, and hence they are also called 

interpolation functions. For more details refer to Refs. {[29] –        

 In a comparison between the finite element method (FEM) and dynamic 

relaxation method (DR), Aalami [32] found that the computer time required for the 

finite element method is eight times greater than for DR analysis, whereas the storage 

capacity for FEM is ten times or more than that for DR analysis. This fact is 

supported by Putcher and Reddy [23], and Turvey and Osman {[17] – [19]} who 

noted that some of the finite element formulations require large storage capacity and 

computer time. Hence due to the large computations involved in the present study, 

the finite element method (FEM) is considered more efficient than the DR method. In 

another comparison, Aalami [32] found that the difference in accuracy between one 
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version of FEM and DR may reach a value of more than 15 % in favor of FEM. 

Therefore, the FEM can be considered of acceptable accuracy. The apparent 

limitation of the DR method is that it can only be applied to limited geometries, 

whereas the FEM can be applied to different intricate geometries and shapes. 

2.3 The Past Work of Buckling Analysis 

 Composite materials are widely used in a broad spectrum of modern 

engineering application fields ranging from traditional fields such as automobiles, 

robotics, day to day appliances, building industry etc. This is due to their excellent 

high strength to weight ratio, modulus to weight ratio, and the controllability of the 

structural properties with the variation of fiber orientation, stacking scheme and the 

number of laminates. Among the various aspects of the structural performance of 

structures made of composite materials is the mechanical behavior of rectangular 

laminated plates which has drawn much attention. In particular, consideration of the 

buckling phenomena in such plates is essential for the efficient and reliable design 

and for the safe use of the structural element. Due to the anisotropic and coupled 

material behavior, the analysis of composite laminated plates is generally more 

complicated than the analysis of homogeneous isotropic ones. 

The members and structures composed of laminated composite material are 

usually very thin, and hence more prone to buckling. Buckling phenomenon is 

critically dangerous to structural components because the buckling of composite 

plates usually occurs at a lower applied stress and generates large deformations. This 

led to a focus on the study of buckling behavior in composite materials. General 

introductions to the buckling of elastic structures and of laminated plates can be 

found in e.g. Refs. {[33] – [46]}. However, these available Curves and data are 

restricted to idealized loading, namely, uniaxial or biaxial uniform compression. 

Due to the importance of buckling considerations, there is an overwhelming 

number of investigations available in which corresponding stability problems are 

considered by a wide variety of analysis methods which may be of a closed – form 
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analytical nature or may be sorted into the class of semi – analytical or purely 

numerical analysis method. 

Closed – form exact solutions for the buckling problem of rectangular 

composite plates are available only for limited combinations of boundary conditions 

and laminated schemes. These include cross – ply symmetric and angle – ply anti – 

symmetric rectangular laminates with at least two opposite edges simply supported, 

and similar plates with two opposite edges clamped but free to deflect (i.e. guided 

clamp) or with one edge simply supported and the opposite edge with a guided 

clamp. Most of the exact solutions discussed in the monographs of Whitney [47] who 

developed an exact solution for critical buckling of solid rectangular orthotropic 

plates with all edges simply supported, and of Reddy {[48] – [51]} and Leissa and 

Kang [52], and that of Refs. [39] and [53]. Bao et al. [54] developed an exact solution 

for two edges simply supported and two edges clamped, and Robinson [55] who 

developed an exact solution for the critical buckling stress of an orthotropic sandwich 

plate with all edges simply supported. 

For all other configurations, for which only approximated results are available, 

several semi – analytical and numerical techniques have been developed. The 

Rayleigh – Ritz method [53] and [56], the finite strip method (FSM) [36] and [57], 

the element free Galerkin method (EFG) [58], the differential quadrature technique 

[59], the moving least square differential quadrature method [60] and the most 

extensively used finite element method (FEM) [61] are the most common ones. 

The Kantorovich method (KM) {[62] – [64]}, which is a different and in most 

cases advantageous semi – analytical method, combines a variation approach of 

closed – form solutions and an iterative procedure. The method assumes a solution in 

the form of a sum of products of functions in one direction and functions in the other 

direction. Then, by assuming the function in one direction, the variation problem of 

the plate reduces to a set of ordinary differential equations. In the case of buckling 

analysis, the variation problem reduces to an ordinary differential eigenvalue and 

eigenfunction problem. The solution of the resulting problem is an approximate one, 
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and its accuracy depends on the assumed functions in the first direction. The 

extended Kantorovich method (EKM), which was proposed by Kerr [65], is the 

starting point for an iterative procedure, where the solution obtained in one direction 

is used as the assumed functions in the second direction. After repeating this process 

several times, convergence is obtained. The single term extended Kantorovich 

method was employed for a buckling analysis of rectangular plates by several 

researches. Eienberger and Alexandrov [66] used the method for the buckling 

analysis of isotropic plates with variable thickness. Shufrin and Eienberger [67] and 

[68] extended the solution to thick plates with constant and variable thickness using 

the first and higher order shear deformation theories. Ungbhakorn and 

Singhatanadgid [69] extended the solution to buckling of symmetrically cross – ply 

laminated rectangular plates. The multi – term formulation of the extended 

Kantorovich approach to the simplest samples of rectangular isotropic plates was 

presented by Yuan and Jin [70]. This study showed that the additional terms in the 

expansion can be used in order to improve the solution. 

March and Smith [71] found an approximate solution for all edges clamped. 

Also, Chang et al. [72] developed approximate solution to the buckling of rectangular 

orthotropic sandwich plate with two edges simply supported and two edges clamped 

or all edges clamped using the March – Erickson method and an energy technique. 

Jiang et al. [73] developed solutions for local buckling of rectangular orthotropic hat 

– stiffened plates with edges parallel to the stiffeners were simply supported or 

clamped and edges parallel to the stiffeners were free, and Smith [74] presented 

solutions bounding the local buckling of hat stiffened plates by considering the 

section between stiffeners as simply supported or clamped plates. 

Many authors have used finite element method to predict accurate in – plane 

stress distribution which is then used to solve the buckling problem. Zienkiewicz [75] 

and Cook [76] have clearly presented an approach for finding the buckling strength of 

plates by first solving the linear elastic problem for a reference load and then the 

eigenvalue problem for the smallest eigenvalue which then multiplied by the 
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reference load gives the critical buckling load of the structure. An excellent review of 

the development of plate finite elements during the past 35 years was presented by 

Yang et al. [77]. 

Many buckling analyses of composite plates available in the literature are 

usually realized parallel with the vibration analyses, and are based on two – 

dimensional plate theories which may be classified as classical and shear deformable 

ones. Classical plate theories (CPT) do not take into account the shear deformation 

effects and over predict the critical buckling loads for thicker composite plates, and 

even for thin ones with a higher anisotropy. Most of the shear deformable plate 

theories are usually based on a displacement field assumption with five unknown 

displacement components. As three of these components corresponded to the ones in 

CPT, the additional ones are multiplied by a certain function of thickness coordinate 

and added to the displacements field of CPT in order to take into account the shear 

deformation effects. Taking these functions as linear and cubic forms leads to the so – 

called uniform or Mindlin shear deformable plate theory (USDPT) [78], and 

parabolic shear deformable plate theories (PSDPT) [79] respectively. Different forms 

were also employed such as hyperbolic shear deformable plate theory (HSDPT) [80], 

and trigonometric or sine functions shear deformable plate theory (TSDPT) [81] by 

researchers. Since these types of shear deformation theories do not satisfy the 

continuity conditions among many layers of the composite structures, the zig – zag 

type of the plate theories introduced by Di Sciuva [82], and Cho and Parmeter [83] in 

order to consider interlaminar stress continuities. Recently, Karama et al. [84] 

proposed a new exponential function {i.e. exponential shear deformable plate theory 

(ESDPT)} in the displacement field of the composite laminated structures for the 

representation of the shear stress distribution along the thickness of the composite 

structures and compared their result for static and dynamic problem of the composite 

beams with the sine model. 

Within the classical lamination theory, Jones [85] presented a closed – form 

solution for the buckling problem of cross – ply laminated plates with simply 
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supported boundary conditions. In the case of multi – layered plates subjected to 

various boundary conditions which are different from simply supported boundary 

conditions at all of their four edges, the governing equations of the buckling of the 

composite plates do not admit an exact solution, except for some special 

arrangements of laminated plates. Thus, for the solution of these types of problems, 

different analytical and / or numerical methods are employed by various researchers. 

Baharlou and Leissa [56] used the Ritz method with simple polynomials as 

displacement functions, within the classical theory, for the problem of buckling of 

cross and angle – ply laminated plates with arbitrary boundary conditions and 

different in – plane loads. Narita and Leissa [86] also applied the Ritz method with 

the displacement components assumed as the double series of trigonometric functions 

for the buckling problem of generally symmetric laminated composite rectangular 

plates with simply supported boundary conditions at all their edges. They 

investigated the critical buckling loads for five different types of loading conditions 

which are uniaxial compression (UA – C), biaxial compression (BA – C), biaxial 

compression – tension (BA – CT), and positive and negative shear loadings. 

The higher – order shear deformation theories can yield more accurate inter – 

laminate stress distributions. The introduction of cubic variation of displacement also 

avoids the need for shear correction displacement. To achieve a reliable analysis and 

safe design, the proposals and developments of models using higher order shear 

deformation theories have been considered. Lo et al. [87] and [ 88] reviewed the 

pioneering work on the field and formulated a theory which accounts for the effects 

of transverse shear deformation, transverse strain and non – linear distribution of the 

in – plane displacements with respect to the thickness coordinate. Third – order 

theories have been proposed by Reddy {[89] – [92]}, Librescu [93], Schmidt [94], 

Murty [95], Levinson [96], Seide [97], Murthy [98], Bhimaraddi [99], Mallikarjuna 

and Kant [100], Kant and Pandya [101], and Phan and Reddy [8], among others. 

Pioneering work and overviews in the field covering closed – form solutions and 

finite element models can be found in Reddy [90,102,103], Mallikarjuna and Kant 
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[100], Noor and Burton [104], Bert [105], Kant and Kommineni [106], and Reddy 

and Robbins [107] among others. 

 For the buckling analysis of the cross – ply laminated plates subjected to 

simply supported boundary conditions at their opposite two edges and different 

boundary conditions at the remaining ones Khdeir [108] and Reddy and Khdeir [51] 

used a parabolic shear deformation theory and applied the state – space technique. 

Hadian and Nayfeh [109], on the basis of the same theory and for the same type of 

problem, needed to modify the technique due to ill – conditioning problems 

encountered especially for thin and moderately thick plates. The buckling analyses of 

completely simply supported cross – ply laminated plates were presented by Fares 

and Zenkour [110], who added a non – homogeneity coefficient in the material 

stiffnesses within various plate theories, and by Matsunaga [111] who employed a 

global higher order plate theory. Gilat el al. [112] also investigated the same type of 

problem on the basic of a global – local plate theory where the displacement field is 

composed of global and local contributions, such that the requirement of the 

continuity conditions and delamination effects can be incorporated into formulation.  

 Many investigations have been reported for static and stability analysis of 

composite laminates using different traditional methods. Pagano [113] developed an 

exact three – dimensional (3 – D) elasticity solution for static analysis of rectangular 

bi – directional composites and sandwich plates. Noor [114] presented a solution for 

stability of multi – layered composite plates based on 3 – D elasticity theory by 

solving equations with finite difference method. Also, 3 – D elasticity solutions are 

presented by GU and Chattopadhyay [115] for the buckling of simply supported 

orthotropic composite plates. When the problem is reduced from a three – 

dimensional one (3 – D) to a two-dimensional case to contemplate more efficiently 

the computational analysis of plate composite structures, the displacement based 

theories and the corresponding finite element models receive the most attention 
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Bifurcation buckling of laminated structures has been investigated by many 

researchers without considering the flatness before buckling [117]. This point was 

first clarified for laminated composite plates for some boundary conditions and for 

some lamina configurations by Leissa [117]. Qatu and Leissa [118] applied this result 

to identify true buckling behaviour of composite plates. Elastic bifurcation of plates 

has been extensively studied and well documented in standard texts e.g. [33] and 

[119], research monographs {[120] – [122]} and journal papers {[123] –         

It is important to recognize that, with the advent of composite media, certain 

new material imperfections can be found in composite structures in addition to the 

better – known imperfections that one finds in metallic structures. Thus, broken 

fibers, delaminated regions, cracks in the matrix material, as well as holes, foreign 

inclusions and small voids constitute material and structural imperfections that can 

exist in composite structures. Imperfections have always existed and their effect on 

the structural response of a system has been very significant in many cases. These 

imperfections can be classified into two broad categories: initial geometrical 

imperfections and material or constructional imperfections. 

The first category includes geometrical imperfections in the structural 

configuration (such as a local out of roundness of a circular cylindrical shell, which 

makes the cylindrical shell non – circular; a small initial curvature in a flat plate or 

rod, which makes the structure non – flat, etc.), as well as imperfections in the 

loading mechanisms (such as load eccentricities; an axially loaded column is loaded 

at one end in such a manner that a bending moment exists at that end). The effect of 

these imperfections on the response of structural systems has been investigated by 

many researchers and the result of these efforts can be easily found in books [3], as 

well in published papers [127] –        

The second class of imperfections is equally important, but has not received as 

much attentions as the first class; especially as far as its effect on the buckling 

response characteristics is concerned. For metallic materials, one can find several 

studies which deal with the effect of material imperfections on the fatigue life of the 
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structural component. Moreover, there exist a number of investigations that deal with 

the effect of cut – outs and holes on the stress and deformation response of thin 

plates. Another material imperfection is the rigid inclusion. The effect of rigid 

inclusions on the stress field of the medium in the neighborhood of the inclusion has 

received limited attention. The interested reader is referred to the bibliography of 

Professor Naruoka [127]. 

There exist two important classes of material and constructional – type 

imperfections, which are very important in the safe design, especially of aircraft and 

spacecraft. These classes consist of fatigue cracks or cracks in general and 

delamination in systems that employ laminates (i.e. fiber – reinforced composites). 

There is considerable work in the area of stress concentration at crack tips and crack 

propagation. Very few investigations are cited, herein, for the sake of brevity. These 

include primarily those dealing with plates and shells and non – isotropic 

construction. Some deal with cracks in metallic plates and shells {[145] – [148]}. 

Others deal with non – isotropic construction and investigate the effects of non – 

isotropy {[149] – [154]}. In all of these studies, there is no mention of the effect of 

the crack presence on the overall stability or instability of the system. 

Finally, delamination is one of the most commonly found defects in laminated 

structural components. Most of the work found in the literature deals with flat 

configurations. 

Composite structures often contain delamination. Causes of delamination are 

many and include tool drops, bird strikes, runway debris hits and manufacturing 

defects. Moreover, in some cases, especially in the vicinity of holes or close to edges 

in general, delamination starts because of the development of interlaminar stresses. 

Several analyses have been reported on the subject of edge delamination and its 

importance in the design of laminated structures. A few of these works are cited 

{[155] – [161]}. These and their cited references form a good basis for the interested 

reader. The type of delamination that comprises the basic and primary treatise is the 

one that is found to be present away from the edges (internal). This delaminating 
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could be present before the laminate is loaded or it could develop after loading 

because of foreign body (birds, micrometer, and debris) impact. This is an extremely 

important problem especially for laminated structures that are subject to destabilizing 

loads (loads that can induce instability in the structure and possibly cause growth of 

the delamination; both of these phenomena contribute to failure of the laminate). The 

presence of delamination in these situations may cause local buckling and / or trigger 

global buckling and therefore induce a reduction in the overall load – bearing 

capacity of the laminated structure. The problem, because of its importance, has 

received considerable attention. 

 In the present study, the composite media are assumed free of imperfections 

i.e. initial geometrical imperfections due to initial distortion of the structure, and 

material and / or constructional imperfections such as broken fibers, delaminated 

regions, cracks in the matrix material, foreign inclusions and small voids which are 

due to inconvenient selection of fibers / matrix materials and manufacturing defects. 

Therefore, the fibers and matrix are assumed perfectly bonded. 
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Chapter (3) 

Mathematical Formulations and Numerical Modeling 

3.1 Introduction 

The following assumptions were made in developing the mathematical 

formulations of laminated plates: 

1. All layers behave elastically; 

2. Displacements are small compared with the plate thickness; 

3. Perfect bonding exists between layers; 

4. The laminate is equivalent to a single anisotropic layer;  

5. The plate is flat and has a constant thickness;  

6. The plate buckles in a vacuum and all kinds of damping are neglected. 

Unlike homogeneous plates, where the coordinates are chosen solely based on 

the plate shape, coordinates for laminated plates should be chosen carefully. There 

are two main factors for the choice of the coordinate system. The first factor is the 

shape of the plate. Where rectangular plates will be best represented by the choice of 

rectangular (i.e. Cartesian) coordinates. It will be relatively easy to represent the 

boundaries of such plates with coordinates. The second factor is the fiber orientation 

or orthotropy. If the fibers are set straight within each lamina, then rectangular 

orthotropy would result. It is possible to set the fibers in a radial and circular fashion, 

which would result in circular orthotropy. Indeed, the fibers can also be set in 

elliptical directions, which would result in elliptical orthotropy. 

The choice of the coordinate system is of critical importance for laminated 

plates. This is because plates with rectangular orthotropy could be set on rectangular, 

triangular, circular or other boundaries. Composite materials with rectangular 

orthotropy are the most popular, mainly because of their ease in design and 

manufacturing. The equations that follow are developed for materials with 

rectangular orthotropy. 
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Fig. (3.1) below shows the geometry of a plate with rectangular orthotropy 

drawn in the cartesian coordinates X, Y, and Z or 1, 2, and 3. The parameters used in 

such a plate are: (1) the length in the X-direction, (a); (2) the length in the Y – 

direction (i.e. breadth), (b); and (3) the length in the Z – direction (i.e. thickness), (h). 

 

 

Fig. 3.1 The geometry of a laminated composite plate 

 

3.2 Fundamental Equations of Elasticity 

Classical laminated plate theory (CLPT) is selected to formulate the problem. 

Consider a thin plate of length a, breadth b, and thickness h as shown in Fig. (3.2(a)), 

subjected to in – plane loads Rx, Ry and Rxy as shown in Fig. (3.2(b)). The in – plane 

displacements           and           can be expressed in terms of the out of plane 

displacement         as shown below: 

The displacements are: 
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Where   ,    and    are mid – plane displacements in the direction of the  ,   and   

axes respectively;   is the perpendicular distance from mid – plane to the layer plane. 

 

                              ( a )                                                                       ( b )   

Fig. 3.2 A plate showing dimensions and deformations 
 

 

Fig. 3.3 Geometry of an n-layered laminate 

The plate shown in Fig. (3.2(a)) is constructed of an arbitrary number of orthotropic 

layers bonded together as in Fig. (3.3) above. 

The strains are: 
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The virtual strains: 
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The virtual strain energy: 

   ∫       
 

                                                             

But, 

                

Where, 
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If we neglect the in-plane displacements    and    and considering only the linear 

terms in the strain – displacement equations, we write: 
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 .3 The Numerical Method 

The finite element is used in this analysis as a numerical method to predict the 

buckling loads and shape modes of buckling of laminated rectangular plates. In this 

method of analysis, four – noded type of elements is chosen. These elements are the 

four – noded bilinear rectangular elements of a plate. Each element has three degrees 



32 

 

of freedom at each node. The degrees of freedom are the lateral displacement ( ), 

and the rotations ( ) and ( ) about the ( ) and ( ) axes respectively.  

The finite element method is formulated by the energy method. The numerical 

method can be summarized in the following procedures: 

   The choice of the element and its shape functions. 

   Formulation of finite element model by the energy approach to develop both 

element stiffness and differential matrices. 

   Employment of the principles of non – dimensionality to convert the element 

matrices to their non – dimensional forms. 

   Assembly of both element stiffness and differential matrices to obtain the 

corresponding global matrices. 

   Introduction of boundary conditions as required for the plate edges. 

   Suitable software can be used to solve the problem (here two software were 

utilized, FORTRAN and ANSYS). 

For an   noded element, and 3 degrees of freedom at each node. 

Now express   in terms of the shape functions   (given in Appendix (B)) and noded 

displacements   , equation (3.6) can be written as: 

                                                                            

Where, 
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The stress – strain relation is: 

      

Where   are the material properties which could be written as follows: 
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Where     are given in Appendix (A). 
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Where   denotes volume. 
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Where     ∑ ∫     
    

  

    

 
    is the bending stiffness, and    is the element 

stiffness matrix which could be written as follows:  

   ∫                                                           

The virtual work done by external forces can be expressed as follows: Refer to Fig. 

(   )  

Denoting the nonlinear part of strain by     
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Fig. (3.4) External forces acting on an element 

Hence 
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This can be written as: 
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Substitute                         
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Therefore, equation (3.15) could be written in the following form: 

                                                                     

Where, 
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   is the differential stiffness matrix known also as geometric stiffness matrix, initial 

stress matrix, and initial load matrix.  

The total energy:  

                                                                       

Since     is an arbitrary displacement which is not zero, then 

                                                                       

Now let us compute the elements of the stiffness and the differential matrices. 
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The elements of the stiffness matrix can be expressed as follows: 
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The elements of the differential stiffness matrix can be expressed as follows; 
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The integrals in equations (3.19) and (3.20) are given in Appendix (C). 

The shape functions for a 4 – noded element is shown below in Fig. (   ). 

 

Fig. 3.5 A four noded element with local and global co – ordinates 

The shape functions for the 4 – noded element expressed in global co – ordinates 

(   ) are as follows: 

                                

                                  

Where, 

  
  

  
           

  

  
 

The shape functions in local co – ordinates are as follows: 
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The values of the coefficients      are given in the table in Appendix (B).  
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The values of the integrals are converted from local co – ordinate (   ) to global co – 

ordinates as follows: 
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In the previous equations    
 

 
 and    

 

 
 where   and   are the lengths of the 

plate along the   – and   – axis respectively.   and   are the number of elements in 

the   – and   – directions respectively.  
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The elements of the stiffness matrix and the differential matrix can be written as 

follows: 

                           
                             

        

   
                           

or in the non – dimensional form 
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The transformed stiffness are as follows: 
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    and    are the elastic moduli in the direction of the fiber and the transverse 

directions respectively,   is the Poisson's ratio.    ,    , and     are the shear 

moduli in the   –    plane,   –    plane, and   –    plane respectively, and the 

subscripts 1 and 2 refer to the direction of fiber and the transverse direction 

respectively.   
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Chapter (4) 

Verification of the Computer Program 

4.1 Convergence Study 

The optimum number of plate elements in the   any   directions (i.e. mesh size 

or discretization), to be used in order to compute the buckling loads with reasonable 

accuracy can be obtained by a convergence study. The suitable number of finite 

elements is determined by a number of factors which include material properties, 

plate dimensions, lamination scheme, boundary conditions and the storage capacity 

of the computer ram. 

It can be observed that, as the mode order increases, the number of finite 

elements required increases. Therefore, it is expected that the higher modes need 

more number of elements. 

Table (4.1) shows the convergence study of non – dimensional buckling load of 

simply supported SS square isotropic plate with length to thickness ratio (a/h=20) 

having the following material properties: material 1:  

                                              

The discretization of elements used are: 

       × 2  = 4   elements  

       × 3  = 9   elements  

       × 4  = 16   elements  

       × 5  = 25 elements  

       × 6  = 36 elements  

       × 7  = 49 elements  

       × 8  = 64 elements  

       × 9  = 81 elements  

        × 10  = 100 elements 
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It could be observed from table (4.1) that the values of the buckling parameter 

 ̅         
   converge as the number of elements in the mesh are increased (i.e. as 

the mesh size is progressively reduced). These results suggest that a     mesh over 

the plate is adequate for the present work (i.e. less than 1.32% difference compared to 

the finest mesh result available). Therefore, a mesh size of     is found to be 

sufficient to predict the first seven modes of buckling load. In practice only the first 

three modes of buckling are sufficient. 

Table (4.1) Convergence study of non – dimensional modes of buckling  ̅  

       
  of simply supported (SS) isotropic square plate with a/h=20. 

(material 1) 

Mesh 

Size 

Mode Sequence Number  
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4.2 Validation of the Finite Element (FE) Program  

In order to check the validity, applicability and accuracy of the present FE 

method, many comparisons were performed. The comparisons include theoretical, 

ANSYS simulation and experimental results. 

4.2.1 Comparisons with Theoretical Results 

In table (4.2) the non – dimensional critical buckling load is presented in order 

to compare with References [162], [163] and [164] for an isotropic plate of material 1 

with different aspect ratios. As the table shows, the present results have a good 

agreement with References [162], [163] and [164]. 

Table (4.2) Comparison of the non – dimensional critical buckling load  ̅  

      for an isotropic plate (material 1) 

Aspect 

Ratio a/b 

References 

Ref. [162] Ref. [163] Ref. [164] Present Study 

                               

                               

 

Table (4.3) below shows the effect of plate aspect ratio and modulus ratio on 

non – dimensional critical loads  ̅              of rectangular laminates under 

biaxial compression. The following material properties were used: material 2:    

                                                              

   . It is observed that the non – dimensional buckling load increases for symmetric 

laminates as the modular ratio increases. The present results were compared with 

Osman [165] and Reddy [166]. The verification process showed good agreement 

especially as the aspect ratio increases and the modulus ratio decreases.   
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Table (4.3) Buckling load for (0/ 90/ 90/ 0) simply supported (SS) plate for 

different aspect and moduli ratios under biaxial compression (material 2) 

Aspect 

Ratio a/b 

Modular 

Ratio 

Biaxial Compression 

                     

 Present                                    

    Ref. [165] -        -        -  

 Ref. [166]                                    

 Present                               

    Ref. [165] -       -       - 

 Ref. [166]                               

 Present                               

    Ref. [165] -       -       - 

 Ref. [166]                               

              

Table (4.4) shows the effect of plate aspect ratio, and modulus ratio on non – 

dimensional critical buckling loads  ̅              of simply supported (SS) 

antisymmetric cross – ply rectangular laminates under biaxial compression. The 

properties of material 2 were used. It is observed that the non – dimensional buckling 

load decreases for antisymmetric laminates as the modulus ratio increases. The 

present results were compared with Reddy [166]. The validation process showed 

good agreement especially as the aspect ratio increases and the modulus ratio 

decreases. 
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Table (4.4) Buckling load for (0/ 90/ 90/ 0) simply supported (SS) plate for 

different aspect and moduli ratios under biaxial compression (material 2) 

Aspect 

Ratio a/b 

Modular 

Ratio 

Biaxial Compression 

                     

    
Present                               

Ref. [166]                               

    
Present                               

Ref. [166]                               

    
Present                               

Ref. [166]                               

 

Table (4.5) below shows the effect of plate aspect ratio, and modulus ratio on 

non – dimensional critical buckling loads of simply supported (SS) antisymmetric 

angle – ply rectangular laminates under biaxial compression. The properties of 

material 2 were used. It is observed from table (4.5) that the prediction of the 

buckling loads by the present study is closer to that of Osman [165] and Reddy [166].   

Table (4.5) Buckling load for antisymmetric angle – ply           plate with 

different moduli and aspect ratios under biaxial compression (material 2) 

Aspect 

Ratio a/b 

Modular 

Ratio 

Biaxial Compression 

                   

 Present                             

    Ref. [165]        -        -  

 Ref. [166]                             

 Present                            

    Ref. [165]       -        - 

 Ref. [166]                            
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 Present                            

    Ref. [165]       -        - 

 Ref. [166]                            

  

In tables (4.6) and (4.7), the buckling loads for symmetrically laminated 

composite plates of layer orientation (0/ 90/ 90/ 0) have been determined for three 

different aspect ratios ranging from 0.5 to 1.5 and two modulus ratios 40 and 5 of 

material 2. It is observed that the buckling load increases with increasing aspect ratio 

for biaxial compression loading. The buckling load is maximum for clamped – 

clamped (CC), and clamped – simply supported (CS) boundary conditions, while 

minimum for simply – simply supported (SS) boundary conditions. It is seen from 

tables (4.6) and (4.7) that the values of buckling loads by the present study is much 

closer to the of Osman [165].  

Table (4.6) Buckling load for (0/ 90/ 90/ 0) plate with different boundary 

conditions and aspect ratios under biaxial compression   ̅         
    

(material 2)                                              

Aspect 

Ratio a/b 

Comparisons 

of Results 

Boundary Conditions 

CC SS CS 

    
Present                      

Ref. [165]                      

    
Present                      

Ref. [165]                      

    
Present                      

Ref. [165]                      
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Table (4.7) Buckling load for (0/ 90/ 90/ 0) plate with different boundary 

conditions and aspect ratios   ̅         
   (material 2)               

                              

Aspect 

Ratio a/b 

Comparisons 

of Results 

Boundary Conditions 

CC SS CS 

    
Present                      

Ref. [165]                      

    
Present                      

Ref. [165]                      

    
Present                      

Ref. [165]                      

 

The same behavior of buckling load applies to symmetrically laminated 

composite plates (0/ 90/ 0) as shown in tables (4.8) and (4.9).   

Table (4.8) Buckling load for (0/ 90/ 0) plate with different boundary conditions 

and aspect ratios   ̅         
   (material 2)                    

                         

Aspect 

Ratio a/b 

Comparisons 

of Results 

Boundary Conditions 

CC SS CS 

    
Present                      

Ref. [165]                      

    
Present                      

Ref. [165]                      

    
Present                      

Ref. [165]                      
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Table (4.9) Buckling load for (0/ 90/ 0) plate with different boundary conditions 

and aspect ratios   ̅         
   (material 2)                       

                    

 

Aspect 

Ratio a/b 

Comparisons 

of Results 

Boundary Conditions 

CC SS CS 

    
Present                      

Ref. [165]                      

    
Present                      

Ref. [165]                      

    
Present                      

Ref. [165]                      

 

4.2.2 Comparisons with the Results of ANSYS Package 

ANSYS is a general-purpose finite element modeling package for numerically 

solving a wide variety of mechanical problems. These problems include: static/ 

dynamic structural analysis (both linear and non – linear), heat transfer and fluid 

problems, as well as acoustic and electromagnetic problems. The problem of buckling 

in ANSYS is considered as static analysis. In this analysis, the following steps are 

done: 

Step (1): Preprocessor: 

Element type: 

1. On the preprocessor menu, click "Element Type". 

2. Click "Add/ Edit/ Delete". 

3. Click "Add". 

4. Choose the element type from the list on the right, then click "OK". 

Real constants: 

1. Click "Real Constants" on the Preprocessor menu. 
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2. Click "Add". 

3. Click "OK" in the Element Type for Real Constant box. 

4. Enter the number of layers, and the values of layers thickness, then click "OK". 

Material properties: 

1. Click "Material Props" on the Preprocessor menu. 

2. Click "Material Models", then click "OK". 

3. Double – click "Structural" in the right side of the window, then "Linear", then 

"Elastic", then finally "Orthotropic". 

4. Enter values for Young's modulus, and for Poisson's ratio, then click "OK". 

5. Double – click "Density" in the right side of the window, then enter its magnitude 

and click "OK".  

Modeling: 

1. Under the "-Modeling-" heading on the Preprocessor menu, click "Create". 

2. Under the "-Areas-" heading, click "Rectangle". 

3. Click "By Dimensions". 

4. Enter in the values of (x) and (y) coordinates. This creates a rectangle, centered at 

the origin. Then click "OK". 

 Meshing: 

1. On the Preprocessor menu, click "Mesh Tool".  

2. Under Lines in the Size Controls section, click "Set". 

3. In the pick box, click "Pick All". 

4. Enter the number of element divisions, then click "OK".  

5. In the Mesh Tool box, click "Mesh"; in the pick box that appears, click "Pick All". 

ANSYS will now mesh the model.    

Step (2): Solution: 

Defining the analysis: 

1. On the Solution menu, click "New Analysis". 

2. Choose "Static", then click "OK". 
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3. On the Solution menu, click "Analysis Options". 

4. Enter the number of modes to extract and set the mode extraction method to 

"Subspace", then click "OK". Defining a fairly fine mesh, leads to easily get accurate 

results for the modes. 

5. Click "OK" in the box for subspace modal analysis options.  

Applying boundary conditions: 

1. On the Solution menu under the "-Loads-" heading, click "Apply".  

2. Click "Displacement". 

3. Click "On Lines". 

4. Click the top and bottom of the plate, then click "OK". (Both the top and bottom 

will have the same degrees of freedom constrained). 

5. Select the type of constrains, then enter a displacement value of (0) and click 

"Apply". 

6. Select the sides of the plate to be constrained, then click "Ok".   

Solving the problem: 

1. On the Solution menu under the "-Solve-" heading, click "Current LS".  

2. Review the analysis summary information presented; in particular, make sure that 

the number of modes to extract is the number that you want. If everything is in order, 

click "OK" in the Solve Current Load Step window. ANSYS will now solve the 

problem. (For modal analysis, ANSYS may give a warning that the mode shapes 

found will be for viewing purposes only; you can ignore this). 

Step (3): Postprocessor: 

Viewing the mode shapes: 

1. On the General Postprocessor menu under the – Read Results – heading, click 

"First Set". 

2. Click "Plot Results". 

3. Under the "-Contour Plot-" heading, click "Nodal Solu". 
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4. Choose "DOF Solution" in the box on the left, and "Translation UZ" in the right to 

see the out – of – plane displacements. The mode frequency will be displayed on the 

right side of the graphics window as "FREQ". 

5. To view the other modes, go back to the General Postprocessor menu, click "Next 

Set" under the "-Read Results-" heading, then repeat steps 2 – 4 above. 

To validate the present results with ANSYS, the present results were converted 

from its non – dimensional form to the dimensional form by using the formula 

 ̅         
 . The E – glass/ Epoxy material is selected to obtain the numerical 

results for the comparisons. The mechanical properties of this material (material 3) is 

given in table (4.10) below.  

Table (4.10) Mechanical Properties of the E – glass/ Epoxy material (material 3) 

Property Value 

                     

                     

                       

                       

                      

                

 

Table (4.11) to (4.14) shows comparisons between the results of the present 

study and that simulated by ANSYS technique. Table (4.11) shows the effect of 

boundary conditions on dimensional buckling loads of symmetric angle – ply (30/ -

30/ -30/ 30) of square thin laminates (      ) under biaxial compression. The 

properties of material 3 in table (4.10) were used. Small differences were shown 

between the results of the two techniques. The difference ranges between 0.6% to less 

than 2%. It is observed that as the mode serial number increases, the difference 

increases. The same behavior of buckling load of both techniques applies to 
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symmetrically laminated composite plates of the order (45/ -45/ -45/ 45), (60/ -60/ -

60/ 60) and (0/ 90/ 90/ 0) shown in tables (4.12), (4.13) and (4.14). 

Table (4.11) Dimensional buckling load of symmetric angle–ply (30/ -30/ -30/ 30) 

square thin laminates with different boundary conditions (a/h=20) (material 3) 
 

Boundary 

Conditions 
Method 

Mode Serial Number 

      

SS 
Present 109.5 N 193.4 N 322.8 N 

ANSYS 109.4 N 206.5 N 315.8 N  

CS 
Present 234.7 N 257.2 N 371.41 N 

ANSYS 233.21 N 255.6 N 378.7 N 
     

Table (4.12) Dimensional buckling load of symmetric angle–ply (45/-45/-45/45) 

square thin laminates with different boundary conditions (a/h=20) (material 3) 
 

Boundary 

Conditions 
Method 

Mode Serial Number 

      

SS 
Present 115.24 N 219.5 N 305.4 N 

ANSYS       N 225.5 N 312.7 N  

CS 
Present 196.33 N 282.8 N 439.53 N 

ANSYS 194.7 N 287.6 N 444.51 N 

     

Table (4.13) Dimensional buckling load of symmetric angle–ply (60/-60/-60/60) 

square thin laminates with different boundary conditions (a/h=20) (material 3) 
 

Boundary 

Conditions 
Method 

Mode Serial Number 

      

SS 
Present 109.39 N 193.213 N 322.19 N 

ANSYS 109.6 N 191.13 N 325.37 N  

CS 
Present 161.4 N 279.1 N 370.5 N 

ANSYS 160.6 N 280.4 N 377.7 N 
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Table (4.14) Dimensional buckling load of symmetric cross–ply (0/ 90/ 90/ 0) 

square thin laminates with different boundary conditions (a/h=20) (material 3) 
 

Boundary 

Conditions 
Method 

Mode Serial Number 

      

SS 
Present 93.4 N 170.4 N 329 N 

ANSYS 94.4 N 181.4 N 315 N  

CS 
Present 244.5 N 263.7 N     23 N 

ANSYS 244.4 N 265.8 N 369.6 N 

 

4.2.3 Comparisons with Experimental Results 

Many numerical and mathematical models exist which can be used to describe 

the behavior of a laminate under the action of different forces. When it comes to 

buckling, a mathematical model can be developed which is used to model the 

phenomenon of buckling. But numerical methods become complicated as the number 

of assumptions and variables increase. Also, once the model is formed, it takes a lot 

of time to solve the partial differential equations and then arrive to the final result. 

This process becomes very cumbersome and time consuming. In view of the above-

mentioned limitations, experimental methods are followed. The experimental process 

needs less time and less computational work. Also, the results obtained in 

experiments are fairly close to that which is obtained theoretically.  

The composites have two components. The first is the matrix which acts as the 

skeleton of the composite and the second is the hardener which acts as the binder for 

the matrix. The reinforcement that was used for the present study was woven glass 

fibers. Glass fibers are materials which consist of numerous extremely fine fibers of 

glass. The hardener that utilized was epoxy which functions as a solid cement to keep 

fiber layers together. 

To manufacture the composites the following steps were taken: 
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1. The weight of the fiber was noted down, then approximately 1/3
rd

 mass of epoxy 

was prepared for further use. 

2. A clean plastic sheet was taken and the mold releasing spray was sprayed on it. 

After that, a generous coating of the hardener mixture was coated on the sheet. A 

woven fiber sheet was taken and placed on top of the coating. A second coating was 

done again, and a second layer of fiber was placed, and the process continued until 

the required thickness was obtained. The fiber was pressed with the help of rollers.  

3. Another plastic sheet was taken and the mold releasing spray was sprayed on it. 

The plastic sheet was placed on top of the fiber with hardener coating. 

4. The plate obtained was placed under weights for a period of 24 hours. 

5. After that the plastic sheets were removed and the plates separated. 

The buckling test rig for biaxial compression was developed in Tehran 

University of Science and Technology, College of Engineering, Iran. The frame was 

built using rectangular shaped mild steel channels. The channels were welded to one 

another and then the frame was prepared. A two-ton hydraulic jacks were assembled 

into the frame to provide the necessary hydraulic forces for biaxial compression of 

the plates. The setup can be easily assembled and disassembled. Thus, the setup 

offers flexibility over the traditional buckling setups.  

It is proposed to undertake some study cases and obtain experimental results of 

non – dimensional buckling of rectangular laminated plates subjected to in – plane 

biaxial Compressive loads. The plates are assumed to be either simply supported on 

all edges (SS), or a combined case of clamped and simply supported (CS), or 

clamped on all edges (CC). 

The effects of various parameters like material anisotropy, fiber orientation, 

aspect ratio, and edge conditions on the buckling load of laminated plates are to be 

investigated and compared with the present finite element results. The plates are 

made of graphite – epoxy material (material 3), and generally square with side 

          and length to thickness ratio (   )=20. The required experiments 

are explained below: 
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Experiment (1): Effect of Material Anisotropy (     ) 

Cross – ply symmetric laminates with length to thickness ratio of (      ) 

are to be tested. The ratio of longitudinal to transverse modulus (     ) is to be 

increased from 10 to 50. The required number of plies is 8. The plate is simply – 

supported (SS) on all edges. The experimental values of buckling load were 

compared with the present theoretical results as shown in table (4.15). 

Table (4.15) Effect of material anisotropy on buckling load          

      Method Buckling loads 

   
Present        

Experimental        

   Present        

Experimental        

   Present        

Experimental        

   Present        

Experimental        

   Present        

Experimental        

 

It is observed that the buckling load decreases with the increase in material 

anisotropy (     ). The present theoretical results were about 10% higher than the 

experimental values which is considered to be acceptable.  

Experiment (2):  Effect of Fiber Orientation     

Symmetric and anti – symmetric cross – ply laminated plates (0/ 90/ 90/ 0) and 

(0/ 90/ 0/ 90) with length to thickness ratio (   ) are to be tested. The required 

number of plies is 8. The plate is simply supported (SS) on four edges. As shown in 
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table (4.16) below, the theoretical buckling load was found to be 10% above the 

experimental value. 

Table (4.16) Effect of fiber orientation on buckling load                    

Orientation Method Buckling loads 

Symmetric 
Present        

Experimental        

Anti – Symmetric  
Present        

Experimental        

 

Experiment (3):  Effect of Aspect Ratio       

The effect of aspect ratio       on the buckling load is studied by testing cross 

– ply symmetric (0/ 90/ 90/ 0) laminates with length to thickness ratio (       . 

The aspect ratios 0.5, 1, 1.5 and 2.0 are to be tested. The required number of plies is 

8. The plate is simply supported on four edges and the modulus ratio is taken to be 

(        ). As shown in table (4.17) below, the difference between the theoretical 

and experimental buckling was found to be about 10%. 

Table (4.17) Effect of aspect ratio on buckling load                    

Aspect Ratio      

(   ) 
Method Buckling loads 

    
Present        

Experimental        

    
Present        

Experimental        

    
Present        

Experimental        

    
Present        

Experimental        
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Experiment (4):  Effect of Boundary Conditions 

Cross – ply symmetric laminates (0/ 90/ 90/ 0) can be used to study the effect of 

the boundary conditions on the buckling load. The length to thickness ratio is taken to 

be (      ). The boundary conditions used are SS, CS and CC. The required 

number of plies is 8 and the modulus ratio (     ) is selected to be 40. As shown in 

table (4.18) below, the same difference between the theoretical and experimental 

results was observed. 

 Table (4.18) Effect of boundary conditions on buckling load           

         

Boundary 

Conditions 
Method Buckling loads 

SS 
Present        

Experimental        

CS 
Present        

Experimental        

CC 
Present        

Experimental        
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Chapter (5) 

Numerical Results and Discussions 

With confidence in the finite element (FE) program proved through the various 

verification exercises undertaken, it was decided to undertake some study cases and 

generate new results for biaxial loaded laminated composite rectangular plates. The 

plates were assumed to be simply supported (SS), clamped (CC) and clamped – 

simply supported (CS) on all four edges.  

The problem of critical buckling loads of laminated composite plates is analyzed 

and solved using the energy method which is formulated by a finite element model. 

In that model, a four noded rectangular elements of a plate is considered. Each 

element has three degrees of freedom at each node. The degrees of freedom are the 

lateral displacement  , and the rotations   and   about the   and   axes 

respectively. 

The effects of lamination scheme, aspect ratio, material anisotropy, fiber 

orientation of layers, reversed lamination scheme and boundary conditions on the non 

– dimensional critical buckling loads of laminated composite plates are investigated. 

The material chosen has the following properties: material 2:       

                                             . 

5.1 Effect of Lamination Scheme 

In the present analysis the lamination scheme of plates is supposed to be 

symmetric, anti – symmetric and quasi – isotropic. 

Four lamination schemes were considered which are symmetric and anti – 

symmetric cross – ply and angle – ply laminates. Table (5.1) gives a comparison 

between the non – dimensional buckling loads for all lamination schemes. The results 

are shown graphically in Fig. (5.1). The thickness of all layers is assumed equal, the 

length to thickness ratio (      ), and the modulus ratio (       ). It is noticed 

from table (5.1) and Figs. (5.1), (5.2) and (5.3) that the values of the non – 

dimensional buckling loads for both symmetric and anti – symmetric lamination are 
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slightly different, except for symmetric and anti – symmetric angle – ply laminates 

which are exactly the same. Because of this fact, the rest of the upcoming effects will 

be discussed for symmetric case only. The results indicate that the symmetric 

laminate is stiffer than the anti – symmetric one. This phenomenon is caused by 

coupling between bending and stretching which lowers the buckling loads of 

symmetric laminate.  

Table (5.1) The first five non – dimensional buckling loads  ̅         
  of 

symmetric cross – ply (0/ 90/ 90/ 0) and anti – symmetric cross – ply (0/ 90/ 0/ 

90), and symmetric angle – ply (45/ -45/ -45/ 45) and anti – symmetric angle – ply 

(45/ -45/ 45/ -45) laminated plates with       , and        , (material 2)     

Lamination  

Scheme 

Mode 

Number 

Boundary Conditions  

SS CC CS 
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   -   -                             

                        

                        

                        

                        

   -      -                          

                        

                        

 

 

Fig. (5.1) Effect of lamination scheme for simply supported laminates 
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Fig. (5.2) Effect of lamination scheme for clamped – clamped laminates  

 

Fig. (5.3) Effect of lamination scheme for clamped – simply supported laminates 
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Tables (5.2) and (5.3) show the buckling load of quasi – isotropic rectangular 

composite plate with       ,       and different modulus ratios (      

        ). The buckling load is highly influenced by its boundary conditions. The 

buckling load of the quasi – isotropic (0/+45/-45/90) rectangular composite plate with 

CC type boundary condition is 1.5 times higher than the buckling load of the 

composite plate with CS type boundary condition and more than 3 times of SS type 

boundary condition. 

Table (5.2) The first three non – dimensional buckling loads of quasi – isotropic 

(0/+45/-45/90) laminated plates with a/h=20, and           (material 2) 

Mode  

Number 

Boundary Conditions 

SS CC CS 

                       

                       

                       

  

Table (5.3) The first three non – dimensional buckling load of quasi – isotropic 

(0/+45/-45/90) laminated plates with a/h=20, and          (material 2) 

Mode  

Number 

Boundary Conditions 

SS CC CS 
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5.2 Effect of Aspect Ratio 

In this study, the buckling loads for symmetrically loaded laminated composite 

plates of layer orientation 0/90/90/0 have been determined for seven different aspect 

ratios ranging from 0.5 to 2.0 and two modulus ratios 40 and 5 as shown in tables 

(5.4) and (5.5) and Figs. (5.4) and (5.5). The first mode of buckling loads was 

considered. It is observed that the buckling load increases continuously with 

increasing aspect ratio but the rate of increase is not uniform. This may be due to the 

effect of bending – extensional twisting stiffness which increases the critical load. 

The buckling load is maximum for clamped – clamped (CC), clamped – simply 

supported (CS) while minimum for simply – simply supported (SS) boundary 

conditions. This means that as the plate becomes more restrained, its resistance to 

buckling increases. The reason is that the structural stiffness reduces due to its 

constrains.   

Table (5.4) The first three non – dimensional buckling loads  ̅         
  of 

symmetric cross – ply (0/ 90/ 90/ 0) laminated plates with       , and 

          (material 2)     

Aspect 

Ratio (   ) 

Mode 

Number 
SS CC CS 
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Table (5.5) The first three non – dimensional buckling loads  ̅         
  of 

symmetric cross – ply (0/ 90/ 90/ 0) laminated plates with       , and 

         (material 2)     

Aspect 

Ratio (   ) 

Mode 

Number 

Boundary Conditions 

SS CC CS 
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Fig. (5.4) Effect of aspect ratio for different boundary conditions, 

          

 



67 

 

 

Fig. (5.5) Effect of aspect ratio for different boundary conditions, 

         

5.3 Effect of Material Anisotropy 

The buckling loads as a function of modulus ratio of symmetric cross – ply 

plates (0/ 90/ 90/ 0) are illustrated in table (5.6) and Fig. (5.6). As confirmed by other 

investigators, the buckling load decreases with increase in modulus ratio. Therefore, 

the coupling effect on buckling loads is more pronounced with the increasing degree 

of anisotropy. It is observed that the variation of buckling load becomes almost 

constant for higher values of elastic modulus ratio. 

Table (5.6) The first three non – dimensional buckling loads  ̅         
  of 

symmetric cross – ply (0/ 90/ 90/ 0) square laminated plates for different 

modulus ratios with       , (material 2) 

      
Mode 

Number 

Boundary Conditions 

SS CC CS 
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Fig. (5.6) Effect of material anisotropy 

 

5.4 Effect of Fiber Orientations of Layers 

The variation of the buckling load,  ̅ with fiber orientation     of square 

laminated plate is shown in tables (5.7) and (5.8), and Figs. (5.7) and (5.8). Three 

boundary conditions SS, CC and CS are considered in this case. The buckling loads 

have been determined for two modulus ratios 40 and 5. The curves of simply – 

simply supported (SS) boundary conditions show maximum value of buckling load at 

      . However, this trend is different for a plate under clamped – clamed (CC) 

boundary conditions which show minimum buckling load at      . For clamped – 

simply supported, it is observed that the buckling load decreases continuously with  , 

this may be due to the total and partial fixed rotation (       ) in the two later cases.   
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Table (5.7) The first three non – dimensional buckling loads  ̅         
  of 

laminated plates for different fiber orientations ( ) with       , and 

           (material 2)     

Orientation 

Angle ( ) 

Mode 

Number 

Boundary Conditions 

SS CC CS 
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Table (5.8) The first three non – dimensional buckling loads  ̅         
  of 

laminated plates for different fiber orientations ( ) with       , and 

          (material 2)     

Orientation 

Angle ( ) 

Mode 

Number 

Boundary Conditions 

SS CC CS 
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Fig. (5.7) Effect of fiber orientation of layers,          

 
 

 

Fig. (5.8) Effect of fiber orientation of layers,         
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5.5 Effect of Reversing Lamination Scheme 

In order to study the stacking sequence of laminated plates, two lamination 

schemes of cross – ply (0/ 90) and (90/ 0) and two other lamination of angle ply (45/ -

45) and (-45/ 45) were considered. The results of their buckling loads of parameter 

( ̅         
 ) are given in tables (5.9), (5.10), (5.11) and (5.12). Three boundary 

conditions SS, CC and CS are considered in this case. The buckling loads have been 

determined for two modulus ratios 40 and 5. It is observed that, the buckling loads 

are completely the same for the given first three modes. 

Therefore, it can be concluded that the buckling load of laminated plates will 

remain the same even if the lamination order is reversed. The reason behind this is 

that the transformed elastic coefficients, [   ], are equal for both lamination schemes.   

Table (5.9) Non – dimensional buckling loads  ̅         
  of (0/ 90) and (90/ 

0) lamination schemes of square laminated plates with       , and       

     (material 2)     

Lamination 

order 

Mode 

Number 

Boundary Conditions 

SS CC CS 
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Table (5.10) Non – dimensional buckling loads  ̅         
  of (0/ 90) and (90/ 

0) lamination schemes of square laminated plates with       , and       

    (material 2)     

Lamination 

order 

Mode 

Number 

Boundary Conditions 

SS CC CS 

                        

                            

                        

                        

                            

                        

     

Table (5.11) Non – dimensional buckling loads  ̅         
  of (45/ -45) and (-

45/ 45) lamination schemes of square laminated plates with       , and 

           (material 2)     

Lamination 

order 

Mode 

Number 

Boundary Conditions 

SS CC CS 

                        

   -                          

                        

                       

-                           
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Table (5.12) Non – dimensional buckling loads  ̅         
  of (45/ -45) and (-

45/ 45) lamination schemes of square laminated plates with       , and 

          (material 2)     

Lamination 

order 

Mode 

Number 

Boundary Conditions 

SS CC CS 

                        

   -                          

                        

                        

-                             

                        

 

5.6 Effect of Boundary Conditions 

The type of boundary support is an important factor in determining the buckling 

loads of a plate along with other factors such as aspect ratio, modulus ratio, … etc  

Three sets of boundary conditions, namely simply – simply supported (SS), 

clamped – clamped (CC), and clamped – simply supported (CS) were considered in 

this study.  

The variations of buckling load,  ̅ with the mode number for thin (      ) 

symmetrically loaded laminated cross – ply (0/90/90/0) plate with modulus ratio 

(       ) were computed and the results are given in table (5.13) and Fig. (5.9).  

It is observed that, for all cases the buckling load increases with the mode 

number but at different rates depending on whether the plate is simply supported, 

clamped or clamped – simply supported. The buckling load is a minimum when the 

plate is simply supported and a maximum when the plate is clamped. Because of the 

rigidity of clamped boundary condition, the buckling load is higher than in simply 

supported boundary condition. It is also observed that as the mode number increases, 

the plate needs additional support. 
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Table (5.13) The first five non – dimensional buckling loads  ̅         
  of 

symmetric (0/90/90/0) square laminated plates with       , and         

Mode 

Number 

Boundary Conditions 

SS CC CS 

                       

                       

                       

                       

                       

 

 

 

Fig. (5.9) Effect of boundary conditions 
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Chapter (6) 

6. Concluding Remarks 

A Fortran program based on finite elements (FE) has been developed for 

buckling analysis of thin rectangular laminated plates using classical laminated plate 

theory (CLPT). The problem of buckling loads of generally layered composite plates 

has been studied. The problem is analyzed and solved using the energy approach, 

which is formulated by a finite element model. In this method, quadrilateral elements 

are applied utilizing a four noded model. Each element has three degrees of freedom 

at each node. The degrees of freedom are: lateral displacement ( ), and rotation ( ) 

and ( ) about the   and   axes respectively. To verify the accuracy of the present 

technique, buckling loads are evaluated and validated with other works available in 

the literature. Further comparisons were carried out and compared with the results 

obtained by the ANSYS package and the experimental result. The good agreement 

with available data demonstrates the reliability of finite element method used. 

The finite element model has been formulated to compute the buckling loads of 

laminated plates with rectangular cross – section and to study the effects of 

lamination scheme, aspect ratio, material anisotropy, fiber orientation of layers, 

reversed lamination scheme and boundary conditions on the non – dimensional 

critical buckling loads of laminated composite plates. Finally, a series of new results 

have been presented. These results show the following: 

1. The symmetric laminate is stiffer than the anti – symmetric one. This phenomenon 

is caused by coupling between bending and stretching which lowers the buckling 

loads of symmetric laminate. 

2. The buckling load is highly influenced by the end support. The buckling load of 

the quasi – isotropic (0/+45/-45/90) rectangular composite plate with clamped – 

clamped type boundary condition is 1.5 times higher than the buckling load of the 

composite plate with clamped – simply supported (CS) type boundary condition, and 

more than 3 times of simply – simply supported (SS) type boundary condition. 
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3. The buckling load increases continuously with increasing aspect ratio, but the rate 

of increase is not uniform. This may be due to the effect of bending – extensional 

twisting stiffness which increases the critical load.  

4. As the plate becomes more restrained, its resistance to buckling increases. The 

reason is that the structural stiffness reduces due to its constraints.  

5. The buckling load decreases with increase in modulus ratio. It is also observed that 

the variation of buckling load becomes almost constant for higher values of elastic 

modulus. This may be attributed to the coupling effect which increases with the 

increasing degree of anisotropy. 

6. The curves of simply – simply supported (SS) boundary conditions show 

maximum value of buckling load at      . However, this trend is different for a 

plate under clamped – clamped (CC) boundary conditions which show minimum load 

at      . For clamped – simply supported, it is observed that the buckling load 

decreases continuously with  . This may be due to the total and partial fixed rotation 

  and   in the two later cases. 

7. The buckling load of laminated plates will remain the same even if the lamination 

order is reversed. The reason behind this is that the transformed elastic coefficients, 

[   ], are equal for both lamination schemes.  

8. The buckling load increases with the mode number but at different rates depending 

on whether the plate is simply supported (SS), clamped (CC) or clamped – simply 

supported. The buckling load is a minimum when the plate is simply supported and a 

maximum when the plate is clamped. Because of the rigidity of clamped boundary 

condition, the buckling load is higher than in simply supported boundary condition. It 

is also observed that as the mode number increases, the plate needs additional 

support.                       
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APPENDICES 

Appendix (A) 

Transformed Material Properties 

The transformed material properties are: 
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Appendix (B) 

Coefficients of Shape Functions 
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Appendix (C) 

Transformation of Integrals from Local to Global Co –

ordinates 

 

The integrals in equations (13) and (14) are given in non - dimensional form as 

follows (limits of integration         to ): 
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      [     (                )                          ] 

In the above expressions     
 

 
    

 

 
  where   and   are the dimensions of the 

plate in the x – and y – directions respectively.   and   are the number of elements 

in the x – and y – directions respectively. Note that    
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Appendix (D) 

The Fortran Program 

C***  This program computes the modes and buckling load. 

 

      PARAMETER (M1=500, M2=100, M3=12, M4=121, M5=7, M6=11, 

     +M7=4, M8=3) 

      REAL LAM,IM 

      INTEGER FLAG,DOF,E,EE 

      DIMENSION ESM(M1,M1),EMM(M1,M1),EMMI(M1,M1),REF(M1,M1), 

     +INDX(M1),E(M2,M3),VAL(M1),RE(M1),IM(M1),W(M5,M6,M6), 

     

+PHI(M5,M6,M6),THI(M5,M6,M6),VECT(M1,M5),NODE(M4,M7),EE(M4,M8) 

 

      OPEN(UNIT=5,FILE='BUCK.DAT',STATUS='OLD') 

      OPEN(UNIT=6,FILE='BUCK.OUT',STATUS='UNKNOWN') 

 

C***  Read number of buckling loads required 

      READ(5,*)NLOAD 

 

C***  Relate local nodes to global nodes 

      CALL NODEN(NODE,NEI,NEJ,FLAG,M4,M7) 

      IF(FLAG.EQ.0) GO TO 444 

 

C***  Read boundary conditions 
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      CALL COMP(NEI,NEJ,E,DOF,NODE,EE,M2,M3,M4,M7,M8) 

      IF(FLAG.EQ.0) GO TO 444 

 

C***  Compute stiffnesses 

      CALL STFN(D11,D12,D22,D16,D26,D66,LAM,M4,FLAG) 

      IF(FLAG.EQ.0) GO TO 444 

 

C***  Compute element matrices and global matrices 

      CALL GLOBAL(ESM,EMM,D11,D12,D22,D16,D26,D66,NEI,NEJ,LAM,ASR, 

     +E,DOF,M1,M2,M3,FLAG) 

      IF(FLAG.EQ.0) GO TO 444 

 

C***  Factorize matrix into upper and lower matrices. 

      CALL LUCOM(EMM,DOF,INDX,FLAG,M1) 

      IF(FLAG.EQ.0) GO TO 444 

 

C***  Inversion of matrix 

      CALL LUSOL(EMM,DOF,INDX,EMMI,M1) 

 

C***  Multiplication of matrices 

      CALL MULT(EMMI,ESM,EMM,DOF,M1) 

       

C***  Save plate matrix as it will be destroyed later. 

      DO 12 I=1,DOF 

      DO 12 J=1,DOF 
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      REF(I,J)=EMM(I,J) 

   12 CONTINUE 

       

C***  Balancing of the plate matrix 

      CALL BAL(EMM,DOF,M1) 

 

C***  Reduction of plate matrix to Heisenberg form 

      CALL HES(EMM,DOF,M1) 

 

C***  Find eigenvalues of an upper Heisenberg matrix 

      CALL HQR(EMM,RE,IM,DOF,FLAG,M1) 

      IF(FLAG.EQ.0) GO TO 444 

       

C***  Sort eigenvalues in ascending order 

      CALL ESORT(RE,VAL,DOF,M1) 

C     CALL NATF1(RE,VAL,DOF,M1) 

 

C***  Compute eigenvectors 

      CALL SIL(REF,VECT,VAL,DOF,FLAG,M1,M5) 

      IF(FLAG.EQ.0) GO TO 444 

 

C***  Arrange eigenvalues and eigenvectors for printing 

      CALL PNATF(VECT,DOF,NEI,NEJ,EE,W,PHI,THI,M1,M4,M5,M6, 

     +M7,M8,NODE) 
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C***  Print result 

      CALL PRINT(VAL,DOF,NLOAD,W,PHI,THI,NEI,NEJ,M1,M5,M6) 

  444 STOP 

      END 

C********************************************* 

C     This subroutine does node numbering. 

      SUBROUTINE NODEN(NODE,NEI,NEJ,FLAG,M4,M7) 

      PARAMETER (M11=100) 

      INTEGER FLAG 

      DIMENSION NODE(M4,M7),NEL(M11) 

 

C     Read numbey of elements 

      READ(5,*)NEI,NEJ 

 

      NE=NEI*NEJ 

      FLAG=1 

      IF(NE.GT.100)THEN 

      WRITE(*,*)'Number of elements must not exceed 100' 

      FLAG=0 

      RETURN 

      ENDIF 

 

      K=1 

      DO 70 N=1,NEI 

      IF(N.GT.1)K=K-(NEJ+1) 
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      IMIN=1+NEJ*(N- ) 

      IMAX=IMIN+NEJ-  

      DO 10 I=IMIN,IMAX 

      DO 20 J=2,4,2 

      NODE(I,J)=K 

      K=K+1 

   20 CONTINUE 

      NNEJ=N*NEJ 

      IF(I.LT.NNEJ) K=K-  

   10 CONTINUE 

 

      DO 50 I=IMIN,IMAX 

      DO 60 J=1,3,2 

      NODE(I,J)=K 

      K=K+1 

   60 CONTINUE 

      NNEJ=N*NEJ 

      IF(I.LT.NNEJ) K=K-  

   50 CONTINUE 

   70 CONTINUE 

      DO 80 I=1,NE 

      NEL(I)=I 

   80 CONTINUE 

      RETURN 

      END 
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c***************************** 

C***  This subroutine reads boundary conditions. 

 

      SUBROUTINE COMP(NEI,NEJ,E,DOF,NODE,EE,M2,M3,M4,M7,M8) 

      INTEGER WI1,PI1,TI1,WI2,PI2,TI2,WJ1,PJ1,TJ1,WJ2,PJ2,TJ2,E, 

     +EE,DOF,COUNT 

 

      DIMENSION E(M2,M3),EE(M4,M8),NODE(M4,M7) 

C***  Read boundary conditions 

      READ(5,*)WI1,PI1,TI1 

      READ(5,*)WI2,PI2,TI2 

      READ(5,*)WJ1,PJ1,TJ1 

      READ(5,*)WJ2,PJ2,TJ2 

 

      NE=NEI*NEJ 

       

      DO 6 I=1,NE 

      DO 6 J=1,4 

      L=NODE(I,J) 

      DO 6 K=1,3 

      EE(L,K)=1000000 

    6 CONTINUE 

       

      IM=NE+1-NEJ 

      DO 10 I=1,IM,NEI 
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      DO 10 J=1,2 

      L=NODE(I,J) 

      IF(WI1.EQ.0) EE(L,1)=0 

      IF(PI1.EQ.0) EE(L,2)=0 

      IF(TI1.EQ.0) EE(L,3)=0 

   10 CONTINUE 

 

      DO 20 I=NEJ,NE,NEI 

      DO 20 J=3,4 

      L=NODE(I,J) 

      IF(WI2.EQ.0) EE(L,1)=0 

      IF(PI2.EQ.0) EE(L,2)=0 

      IF(TI2.EQ.0) EE(L,3)=0 

   20 CONTINUE 

       

      DO 30 I=1,NEJ 

      DO 30 J=2,4,2 

      L=NODE(I,J) 

      IF(WJ1.EQ.0) EE(L,1)=0 

      IF(PJ1.EQ.0) EE(L, )   

      IF(TJ1.EQ.0) EE(L,3)=0 

   30 CONTINUE 

 

      DO 40 I=IM,NE 

      DO 40 J=1,3,2 
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      L=NODE(I,J) 

      IF(WJ2.EQ.0) EE(L,1)=0 

      IF(PJ2.EQ.0) EE(L,2)=0 

      IF(TJ2.EQ.0) EE(L,3)=0 

   40 CONTINUE 

 

      COUNT=0 

      DO 220 I=1,NE 

      DO 220 J=1,4 

      L=NODE(I,J) 

      DO 220 K=1,3 

      IF(EE(L,K).EQ.1000000) THEN 

      COUNT=COUNT+1 

      EE(L,K)=COUNT 

      ENDIF 

  220 CONTINUE 

 

      DO 260 I=1,NE 

      DO 260 J=1,4 

      L=NODE(I,J) 

      DO 260 K=1,3 

      M=K+3*(J- ) 

      E(I,M)=EE(L,K) 

  260 CONTINUE 

      DOF=COUNT 
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      WRITE(*,*)'Degrees of freedom =',DOF 

      RETURN 

      END 

 

C****************************************** 

 

C***  This subroutine computes the stiffness parameters 

 

      SUBROUTINE STFN(D11,D12,D22,D16,D26,D66,LAM,M4,FLAG) 

      REAL NUXY,NUYX,LAM 

      INTEGER FLAG 

      PARAMETER(M44=20) 

      DIMENSION ZK(M44),THETA(M44) 

 

C     Read material properties 

      READ(5,*)EY,GXY,GYZ,GXZ,NUXY,LAM 

C     Read number of layers and orientations 

      READ(5,*)NL,(THETA(I),I=1,NL) 

 

      FLAG=1 

      IF(NL.GT.20)THEN 

      WRITE(*,*)'Number of layers must not exceed 20' 

      FLAG=0 

      RETURN 

      ENDIF 
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c      IF(LAM.GT.50)THEN 

c      WRITE(*,*)'LENGTH-TO-THICKNESS RATIO MUST NOT EXCEED 50' 

c      FLAG=0 

c      RETURN 

c      ENDIF 

 

      SCF=5.0/6.0 

      PI=22.0/7.0 

      NUYX=NUXY*EY 

      C11=1.0/(1.0-NUXY*NUYX) 

      C12=NUXY*EY/(1.0-NUXY*NUYX) 

      C22=EY/(1.0-NUXY*NUYX) 

      C66=GXY 

      C44=GYZ 

      C55=GXZ 

 

      D11=0.0 

      D12=0.0 

      D22=0.0 

      D16=    

      D26=0.0 

      D66=0.0 

 

      TH=1.0/NL 
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      DO 1 I=1,NL+1 

      ZK(I)=-0.5+(I-1)*TH 

    1 CONTINUE 

       

      DO 134 I=1,NL 

      CO=COS(THETA(I)*PI/180.0) 

      SI=SIN(THETA(I)*PI/180.0) 

 

      CB11=C11*CO**4+C22*SI**4+2.0*(C12+2.0*C66)*SI**2*CO**2 

      CB12=(C11+C22-4.0*C66)*SI**2*CO**2+C12*(CO**4+SI**4) 

      CB22=C11*SI**4+C22*CO**4+2.0*(C12+2.0*C66)*SI**2*CO**2 

      CB16=(C11-C12-2.0*C66)*CO**3*SI-(C22-C12-2.0*C66)*SI**3*CO 

      CB26=(C11-C12-2.0*C66)*CO*SI**3-(C22-C12-2.0*C66)*SI*CO**3 

      CB66=(C11+C22-2.0*C12-2.0*C66)*SI**2*CO**2+C66*(SI**4+CO**4) 

      CB44=C44*CO**2+C55*SI**2 

      CB45=(C44+C55)*SI*CO 

      CB55=C44*SI**2+C55*CO**2 

       

      SZ1=ZK(I+1)-ZK(I) 

      SZ2=(ZK(I+1)**2-ZK(I)**2)/2.0 

      SZ3=(ZK(I+1)**3-ZK(I)**3)/    

 

      D11=CB11*SZ3+D11 

      D12=CB12*SZ3+D12 

      D22=CB22*SZ3+D22 
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      D16=CB16*SZ3+D16 

      D26=CB26*SZ3+D26 

      D66=CB66*SZ3+D66 

  134 CONTINUE 

      write(*,*)D11,D22 

      RETURN 

      END 

C************************************************* 

 

      SUBROUTINE GLOBAL(ESM,EMM,D11,D12,D22,D16,D26,D66,NEI,NEJ, 

     +LAM,ASR,ED,DOF,M1,M2,M3,FLAG) 

 

      PARAMETER (M11=12, M33=12) 

      REAL LAM 

      INTEGER ED,T,DOF,FLAG 

      DIMENSION 

ESM(M1,M1),EMM(M1,M1),ED(M2,M3),A(M11),B(M11),C(M11), 

     +D(M11),E(M11),F(M11),G(M11),H(M11),P(M11),Q(M11),R(M11),S(M11), 

     +ST(M33,M33),ZT(M33,M33) 

 

C     Read aspect ratio and edge loads 

      READ(5,*)ASR,PX,PY,PXY 

 

      FLAG=1 

      IF(ASR.GT.5)THEN 

      WRITE(*,*)'ASPECT RATIO MUST NOT EXCEED 5' 
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      FLAG=0 

      RETURN 

      ENDIF 

 

      NE=NEI*NEJ 

      DO 5 L=1,DOF 

      DO 5 T=1,DOF 

      ESM(L,T)=0.0 

      EMM(L,T)=0.0 

    5 CONTINUE 

 

      A(1)=1.0/4.0 

      A(2)=1.0/8.0 

      A(3)=-        

      A(4)=1.0/4.0 

      A(5)=1.0/8.0 

      A(6)=1.0/8.0 

      A(7)=1.0/4.0 

      A(8)=-        

      A(9)=-        

      A(10)=1.0/4.0 

      A(11)=-        

      A(12)=1.0/8.0 

 

      B(1)=-        
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      B(2)=-        

      B(3)=1.0/8.0 

      B(4)=-        

      B(5)=-        

      B(6)=-        

      B(7)=3.0/8.  

      B(8)=-        

      B(9)=-        

      B(10)=3.0/8.0 

      B(11)=-        

      B(12)=1.0/8.0 

 

      C(1)=3.0/8.0 

      C(2)=1.0/8.0 

      C(3)=-        

      C(4)=-        

      C(5)=-        

      C(6)=-        

      C(7)=3.0/8.0 

      C(8)=-        

      C(9)=-        

      C(10)=-        

      C(11)=1.0/8.0 

      C(12)=-        
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      D(1)=0 

      D(2)=-        

      D(3)=0 

      D(4)=0 

      D(5)=-        

      D(6)=0 

      D(7)=0 

      D(8)=1.0/8.0 

      D(9)=0 

      D(10)=0 

      D(11)=1.0/8   

      D(12)=0 

 

      E(1)=-        

      E(2)=-        

      E(3)=1.0/8.0 

      E(4)=1.0/2.0 

      E(5)=1.0/8.0 

      E(6)=1.0/8.0 

      E(7)=1.0/2.0 

      E(8)=-        

      E(9)=-        

      E(10)=-        

      E(11)=1.0/8.0 

      E(12)=-        
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      F(1)=0 

      F(2)=0 

      F(3)=1.0/8.0 

      F(4)=0 

      F(5)=0 

      F(6)=-        

      F(7)=0 

      F(8)=0 

      F(9)=1.0/8.0 

      F(10)=0 

      F(11)=0 

      F(12)=-        

 

      G(1)=1.0/8.0 

      G(2)=1.0/8.0 

      G(3)=0 

      G(4)=1.0/8.0 

      G(5)=1.0/8.0 

      G(6)=0 

      G(7)=-        

      G(8)=1.0/8.0 

      G(9)=0 

      G(10)=-        

      G(11)=1.0/8.0 
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      G(12)=0 

 

      H(1)=0 

      H(2)=-        

      H(3)=0 

      H(4)=0 

      H(5)=1.0/8.0 

      H(6)=0 

      H(7)=0 

      H(8)=1       

      H(9)=0 

      H(10)=0 

      H(11)=-        

      H(12)=0 

 

      P(1)=0 

      P(2)=0 

      P(3)=-        

      P(4)=0 

      P(5)=0 

      P(6)=1.0/8.0 

      P(7)=0 

      P(8)=0 

      P(9)=1.0/8.0 

      P(10)=0 
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      P(11)=0 

      P(12)=-        

 

      Q(1)=-        

      Q(2)=0 

      Q(3)=1.0/8.0 

      Q(4)=1.0/8.0 

      Q(5)=0 

      Q(6)=1.0/8.0 

      Q(7)=-        

      Q(8)=0 

      Q(9)=1.0/8.0 

      Q(10)=1.0/8.0 

      Q(11)=0 

      Q(12)=1.0/8.0 

 

      R(1)=1.0/8.0 

      R(2)=1.0/8.0 

      R( )   

      R(4)=-        

      R(5)=-        

      R(6)=0 

      R(7)=-        

      R(8)=1.0/8.0 

      R(9)=0 
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      R(10)=1.0/8.0 

      R(11)=-        

      R(12)=0 

 

      S(1)=1.0/8.0 

      S(2)=0 

      S(3)=-        

      S(4)=-        

      S(5)=0 

      S(6)=-        

      S(7)=-        

      S(8)=0 

      S(9)=1.0/8.0 

      S(10)=1.0/8.0 

      S(11)=0 

      S(12)=1.0/8.0 

       

      ASR=ASR*NEI/NEJ 

C      D11=4.0*D11*(NEI/NEJ)/ASR 

C      D12=4.0*D12*(NEJ/NEI)*ASR 

C      D16=4.0*D16 

C      D22=4.0*D22*(NEJ/NEI)**3*ASR**3 

C      D26=4.0*D26*(NEJ/NEI)**2*ASR**2 

C      D66=4.0*D66*(NEJ/NEI)*ASR 
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      D11=4.0*D11/ASR 

      D12=4.0*D12*ASR 

      D16=8.0*D16 

      D22=4.0*D22*ASR**3 

      D26=8.0*D26*ASR**2 

      D66=16.0*D66*ASR 

 

      DO 110 I=1,12 

      DO 110 J=1,12 

      RR=2.0*B(I)*(B(J)+G(J)+P(J)/3.0)+8.0*D(I)*D(J)/3.0+2.0*E(I)*( 

     +E(J)/3.0+R(J)/3.0+S(J)/5.0)+2.0*G(I)*(B(J)+9.0*G(J)/5.0+P(J)/3.0)+ 

     +8.0*H(I)*H(J)/9.0+2.0*P(I)*(B(J)/3.0+G(J)/3.0+P(J)/5.0)+ 

     +2.0*R(I)*(E(J)/3.0+3.0*R(J)/5.0+S(J)/5.0)+2.0*S(I)*(E(J)/5.0+ 

     +R(J)/5.0+S(J)/7.0) 

      RR=2.0*RR 

      SS=2.0*C(I)*(C(J)+Q(J)+H(J)/3.0)+8.0*F(I)*F(J)/3.0+2.0*E(I)* 

     +(E(J)/3.0+S(J)/3.0+R(J)/5.0)+2.0*Q(I)*(C(J)+9.0*Q(J)/5.0+H(J)/ 

     +3.0)+8.0*P(I)*P(J)/9.0+2.0*H(I)*(C(J)/3.0+Q(J)/3.0+H(J)/5.0)+ 

     +2.0*S(I)*(E(J)/3.0+3.0*S(J)/5.0+R(J)/5.0)+2.0*R(I)*(E(J)/5.0+ 

     +S(J)/5.0+R(J)/7.0) 

      SS=2.0*SS 

      RS=2.0*B(I)*(C(J)+H(J)/3.0+Q(J))+4.0*D(I)*(E(J)/3.0+R(J)/5.0+ 

     +S(J)/3.0)+4.0*E(I)*F(J)/3.0+2.0*G(I)*(C(J)+3.0*H(J)/5.0+Q(J))+ 

     +8.0*H(I)*P(J)/9.0+2.0*P(I)*(C(J)/3.0+H(J)/9.0+3.0*Q(J)/5.0)+ 

     +4.0*R(I)*F(J)/3.0+4.0*S(I)*F(J)/5.0 
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      RS=2.0*RS 

      SR=2.0*C(I)*(B(J)+P(J)/3.0+G(J))+4.0*F(I)*(E(J)/3.0+S(J)/5.0+ 

     +R(J)/3.0)+4.0*E(I)*D(J)/3.0+2.0*Q(I)*(B(J)+3.0*P(J)/5.0+G(J))+ 

     +8.0*P(I)*H(J)/9.0+2.0*H(I)*(B(J)/3.0+P(J)/9.0+3.0*G(J)/5.0)+ 

     +4.0*S(I)*D(J)/3.0+4.0*R(I)*D(J)/5.0 

      SR=2.0*SR 

      RRRR=8.0*D(I)*D(J)+24.0*G(I)*G(J)+8.0*H(I)*H(J)/3.0+8.0*S(I)*S(J) 

      RRRR=2.0*RRRR 

      SSSS=8.0*F(I)*F(J)+24.0*Q(I)*Q(J)+8.0*P(I)*P(J)/3.0+8.0*S(I)*S(J) 

      SSSS=2.0*SSSS 

      RRSS=8.0*D(I)*F(J)+8.0*G(I)*P(J)+8.0*H(I)*Q(J)+8.0*R(I)*S(J) 

      RRSS=2.0*RRSS 

      SSRR=8.0*F(I)*D(J)+8.0*P(I)*G(J)+8.0*Q(I)*H(J)+8.0*S(I)*R(J) 

      SSRR=2.0*SSRR 

      RSRS=2.0*E(I)*(E(J)+R(J)+S(J))+8.0*H(I)*H(J)/3.0+8.0*P(I)*P(J)/ 

     +3.0+2.0*R(I)*(E(J)+9.0*R(J)/5.0+S(J))+2.0*S(I)*(E(J)+R(J)+9.0* 

     +S(J)/5.0) 

      RSRS=2.0*RSRS 

      RRRS=4.0*D(I)*(E(J)+R(J)+S(J))+8.0*G(I)*H(J)+8.0*H(I)*P(J)/3.0 

      RRRS=2.0*RRRS 

      RSRR=4.0*D(J)*(E(I)+R(I)+S(I))+8.0*H(I)*G(J)+8.0*P(I)*H(J)/3.0 

      RSRR=2.0*RSRR 

      SSRS=4.0*F(I)*(E(J)+R(J)+S(J))+8.0*Q(I)*P(J)+8.0*P(I)*H(J)/3.0 

      SSRS=2.0*SSRS 

      RSSS=4.0*F(J)*(E(I)+R(I)+S(I))+8.0*P(I)*Q(J)+8.0*H(I)*P(J)/3.0 
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      RSSS=2.0*RSSS 

 

      

ST(I,J)=D11*RRRR+D12*SSRR+D16*RSRR+D12*RRSS+D22*SSSS+D26*RSSS

+ 

     +D16*RRRS+D26*SSRS+D66*RSRS 

      ST(I,J)=ST(I,J)*NEJ**2 

      ZT(I,J)=PX*RR/ASR+PXY*(RS+SR)+PY*ASR*SS 

  110 CONTINUE 

 

      DO 40 I=1,NE 

      DO 40 J=1,12 

      L=ED(I,J) 

      DO 40 K=1,12 

      T=ED(I,K) 

      IF(L.NE.0.AND.T.NE.0) THEN 

      ESM(L,T)=ESM(L,T)+ST(J,K) 

      EMM(L,T)=EMM(L,T)+ZT(J,K) 

      ENDIF 

   40 CONTINUE 

      RETURN 

      END 

 

C************************************************************* 

C***   

      SUBROUTINE LUCOM(A,N,INDX,FLAG,M1) 
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      PARAMETER (M11=500, TINY=1.0E-  ) 

      INTEGER FLAG 

      DIMENSION A(M1,M1),VV(M11),INDX(M1) 

 

      FLAG=1 

      D=1.0 

      DO 12 I=1,N 

      AMAX=0 

      DO 11 J=1,N 

      IF(ABS(A(I,J)).GT.AMAX) AMAX=ABS(A(I,J)) 

   11 CONTINUE 

      IF(AMAX.EQ.0.0) THEN 

      WRITE(*,*)'Singular matrix in subroutine LUCOM' 

      FLAG=0 

      RETURN 

      ENDIF 

      VV(I)=1.0/AMAX 

   12 CONTINUE 

      DO 19 J=1,N 

      DO 14 I=1,J-  

      SUM=A(I,J) 

      DO 13 K=1,I-  

      SUM=SUM-A(I,K)*A(K,J) 

   13 CONTINUE 

      A(I,J)=SUM 
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   14 CONTINUE 

      AMAX=0.0 

      DO 16 I=J,N 

      SUM=A(I,J) 

      DO 15 K=1,J-  

      SUM=SUM-A(I,K)*A(K,J) 

   15 CONTINUE 

      A(I,J)=SUM 

      DUM=VV(I)*ABS(SUM) 

      IF(DUM.GE.AMAX) THEN 

      IMAX=I 

      AMAX=DUM 

      ENDIF 

   16 CONTINUE 

      IF(J.NE.IMAX) THEN 

      DO 17 K=1,N 

      DUM=A(IMAX,K) 

      A(IMAX,K)=A(J,K) 

      A(J,K)=DUM 

   17 CONTINUE 

      D=-D 

      VV(IMAX)=VV(J) 

      ENDIF 

      INDX(J)=IMAX 

      IF(A(J,J).EQ.0.0) A(J,J)=TINY 
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      IF(J.NE.N) THEN 

      DUM=1.0/A(J,J) 

      DO 18 I=J+1,N 

      A(I,J)=A(I,J)*DUM 

   18 CONTINUE 

      ENDIF 

   19 CONTINUE 

      RETURN 

      END 

C********************************************** 

 

      SUBROUTINE LUSOL(A,N,INDX,X,M1) 

      DIMENSION A(M1,M1),INDX(M1),X(M1,M1) 

 

      DO 191 IT=1,N 

      DO 192 J=1,N 

      IF(IT.EQ.J) THEN 

      X(J,IT)=1.0 

      ELSE 

      X(J,IT)=0.0 

      ENDIF 

  192 CONTINUE 

 

      II=0 

      DO 12 I=1,N 
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      LL=INDX(I) 

      SUM=X(LL,IT) 

      X(LL,IT)=X(I,IT) 

      IF(II.NE.0) THEN 

      DO 11 J=II,I-  

      SUM=SUM-A(I,J)*X(J,IT) 

   11 CONTINUE 

      ELSE IF(SUM.NE.0) THEN 

      II=I 

      ENDIF 

      X(I,IT)=SUM 

   12 CONTINUE 

      DO 14 I=N,1,-  

      SUM=X(I,IT) 

      DO 13 J=I+1,N 

      SUM=SUM-A(I,J)*X(J,IT) 

   13 CONTINUE 

      X(I,IT)=SUM/A(I,I) 

   14 CONTINUE 

  191 CONTINUE 

      RETURN 

      END 

 

C********************************************* 

C***  This subroutine computes the product of two square 
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C***  matrices 

 

      SUBROUTINE MULT(A,B,C,N,M1) 

      DIMENSION A(M1,M1),B(M1,M1),C(M1,M1) 

 

      DO 15 I=1,N 

      DO 15 J=1,N 

      SUM=0.0 

      DO 10 K=1,N 

      SUM=SUM+A(I,K)*B(K,J) 

   10 CONTINUE    

      C(I,J)=SUM 

   15 CONTINUE 

      RETURN 

      END 

C******************************************* 

C***  This subroutine balances the plate matrix 

      SUBROUTINE BAL(A,N,M1) 

      INTEGER LAST 

      DIMENSION A(M1,M1) 

 

      RADX=2 

      SQRADX=RADX**2 

 

    1 CONTINUE 
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      LAST=1 

      DO 14 I=1,N 

      C=0.0 

      R=0.0 

      DO 11 J=1,N 

      IF(J.NE.I) THEN 

      C=C+ABS(A(J,I)) 

      R=R+ABS(A(I,J)) 

      ENDIF 

   11 CONTINUE 

      IF(ABS(C).GT.0.AND.ABS(R).GT.0) THEN 

      G=R/RADX 

      F=1.0 

      S=C+R 

       

    2 IF(C.LT.G) THEN 

      F=F*RADX 

      C=C*SQRADX 

      GO TO 2 

      ENDIF 

 

      G=RADX 

    3 IF(C.GT.G) THEN 

      F=F/RADX 

      C=C/SQRADX 
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      GO TO 3 

      ENDIF 

 

      IF((C+R)/F.LT.0.95*S) THEN 

      LAST=0 

      G=1.0/F 

      DO 12 J=1,N 

      A(I,J)=A(I,J)*G 

   12 CONTINUE 

      DO 13 J=1,N 

      A(J,I)=A(J,I)*F 

   13 CONTINUE 

      ENDIF 

      ENDIF 

   14 CONTINUE 

      IF(LAST.EQ.0) GO TO 1 

      RETURN 

      END 

C******************************************************* 

C     This subroutine reduces a general matrix to Heisenberg form 

      SUBROUTINE HES(A,N,M1) 

      DIMENSION A(M1,M1) 

 

      DO 17 M=2,N-  

      X=0.0 
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      I=M 

      DO 11 J=M,N 

      IF(ABS(A(J,M-1)).GT.ABS(X)) THEN 

      X=A(J,M- ) 

      I=J 

      ENDIF 

   11 CONTINUE 

      IF(I.NE.M) THEN 

      DO 12 J=M-1,N 

      Y=A(I,J) 

      A(I,J)=A(M,J) 

      A(M,J)=Y 

   12 CONTINUE 

      DO 13 J=1,N 

      Y=A(J,I) 

      A(J,I)=A(J,M) 

      A(J,M)=Y 

   13 CONTINUE 

      ENDIF 

      IF(X.NE.0) THEN 

      DO 16 I=M+1,N 

      Y=A(I,M- ) 

      IF(Y.NE.0) THEN 

      Y=Y/X 

      A(I,M-1)=Y 
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      DO 14 J=M,N 

      A(I,J)=A(I,J)-Y*A(M,J) 

   14 CONTINUE 

      DO 15 J=1,N 

      A(J,M)=A(J,M)+Y*A(J,I) 

   15 CONTINUE 

      ENDIF 

   16 CONTINUE 

      ENDIF 

   17 CONTINUE 

      RETURN 

      END 

       

C***************************************** 

C     This subroutine uses the QR algorithm to find eigenvalues. 

      SUBROUTINE HQR(A,WR,WI,N,FLAG,M1) 

      INTEGER FLAG 

      DIMENSION A(M1,M1),WR(M1),WI(M1) 

 

      FLAG=1 

      ANORM=0 

      DO 10 I=1,N 

      DO 10 J=MAX(I-1,1),N 

      ANORM=ANORM+ABS(A(I,J)) 

   10 CONTINUE 
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      NN=N 

      T=0.0 

    1 IF(NN.GE.1) THEN 

      ITS=0 

    2 DO 13 L=NN,2,-  

      S=ABS(A(L-1,L-1))+ABS(A(L,L)) 

      IF(S.EQ.0) S=ANORM 

      IF(ABS(A(L,L-1))+S.EQ.S) THEN 

      A(L,L- )     

      GO TO 3 

      ENDIF 

   13 CONTINUE 

      L=1 

    3 X=A(NN,NN) 

      IF(L.EQ.NN) THEN 

      WR(NN)=X+T 

      WI(NN)=0.0 

      NN=NN-  

      ELSE 

      Y=A(NN-1,NN- ) 

      W=A(NN,NN-1)*A(NN-1,NN) 

      IF(L.EQ.NN-1) THEN 

      P=0.5*(Y-X) 

      Q=P**2+W 
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      Z=SQRT(ABS(Q)) 

      X=X+T 

      IF(Q.GE.0.0) THEN 

      Z=P+SIGN(Z,P) 

      WR(NN)=X+Z 

      WR(NN-1)=WR(NN) 

      IF(ABS(Z).GT.0) WR(NN)=X-W/Z 

      WI(NN)=0.0 

      WI(NN- )     

      ELSE 

      WR(NN)=X+P 

      WR(NN-1)=WR(NN) 

      WI(NN)=Z 

      WI(NN-1)=-Z 

      ENDIF 

      NN=NN-  

      ELSE 

C      IF(ITS.EQ.30) THEN 

C      WRITE(*,*)'Iterations exceeded 30 in HQR subroutine' 

C      FLAG=0 

C      RETURN 

C      ENDIF 

      IF(ITS.EQ.10.OR.ITS.EQ.20) THEN 

      T=T+X 

      DO 14 I=1,NN 
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      A(I,I)=A(I,I)-X 

   14 CONTINUE 

      S=ABS(A(NN,NN-1))+ABS(A(NN-1,NN- )) 

      X=0.75*S 

      Y=X 

      W=-0.4375*S**2 

      ENDIF 

      ITS=ITS+1 

      DO 15 M=NN-2,L,-  

      Z=A(M,M) 

      R=X-Z 

      S=Y-Z 

      P=(R*S-W)/A(M+1,M)+A(M,M+1) 

      Q=A(M+1,M+1)-Z-R-S 

      R=A(M+2,M+1) 

      S=ABS(P)+ABS(Q)+ABS(R) 

      P=P/S 

      Q=Q/S 

      R=R/S 

      IF(M.EQ.L) GO TO 4 

      U=ABS(A(M,M-1))*(ABS(Q)+ABS(R)) 

      V=ABS(P)*(ABS(A(M-1,M-1))+ABS(Z)+ABS(A(M+1,M+1))) 

      IF(U+V.EQ.V) GO TO 4 

   15 CONTINUE 

    4 DO 16 I=M+2,NN 
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      A(I,I- )     

      IF(I.NE.M+2) A(I,I- )     

   16 CONTINUE 

      DO 19 K=M,NN-  

      IF(K.NE.M) THEN 

      P=A(K,K- ) 

      Q=A(K+1,K- ) 

      R=0.0 

      IF(K.NE.NN-1) R=A(K+2,K- ) 

      X=ABS(P)+ABS(Q)+ABS(R) 

      IF(ABS(X).GT.0) THEN 

      P=P/X 

      Q=Q/X 

      R=R/X 

      ENDIF 

      ENDIF 

      S=SIGN(SQRT(P**2+Q**2+R**2),P) 

      IF(ABS(S).GT.0) THEN 

      IF(K.EQ.M) THEN 

      IF(L.NE.M) A(K,K-1)=-A(K,K- ) 

      ELSE 

      A(K,K-1)=-S*X 

      ENDIF 

      P=P+S 

      X=P/S 
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      Y=Q/S 

      Z=R/S 

      Q=Q/P 

      R=R/P 

      DO 17 J=K,NN 

      P=A(K,J)+Q*A(K+1,J) 

      IF(K.NE.NN-1) THEN 

      P=P+R*A(K+2,J) 

      A(K+2,J)=A(K+2,J)-P*Z 

      ENDIF 

      A(K+1,J)=A(K+1,J)-P*Y 

      A(K,J)=A(K,J)-P*X 

   17 CONTINUE 

      DO 18 I=L,MIN(NN,K+3) 

      P=X*A(I,K)+Y*A(I,K+1) 

      IF(K.NE.NN- ) THEN 

      P=P+Z*A(I,K+2) 

      A(I,K+2)=A(I,K+2)-P*R 

      ENDIF 

      A(I,K+1)=A(I,K+1)-P*Q 

      A(I,K)=A(I,K)-P 

   18 CONTINUE 

      ENDIF 

   19 CONTINUE 

      GO TO 2 
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      ENDIF 

      ENDIF 

      GO TO 1 

      ENDIF 

      RETURN 

      END 

C******************************************* 

C***  This subroutine arrange loads in descending order. 

 

      SUBROUTINE ESORT(LAMBDA,VAL,DOF,M1) 

      REAL LAMBDA 

      INTEGER DOF 

      DIMENSION LAMBDA(M1),VAL(M1) 

 

      DO 14 I=1,DOF-  

      K=I 

      P=LAMBDA(I) 

      DO 11 J=I+1,DOF 

      IF(LAMBDA(J).LE.P)THEN 

      K=J 

      P=LAMBDA(J) 

      ENDIF 

   11 CONTINUE 

      IF(K.NE.I)THEN 

      LAMBDA(K)=LAMBDA(I) 
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      LAMBDA(I)=P 

      ENDIF 

   14 CONTINUE 

      DO 15 I=1,DOF 

      VAL(I)=LAMBDA(I) 

   15 CONTINUE 

      RETURN 

      END 

C*********************************************** 

C***  This subroutine computes the eigenvectors. 

 

      SUBROUTINE SIL(A,X,VAL,NN,FLAG,M1,M5) 

      PARAMETER (M11=500) 

      INTEGER FLAG 

      DIMENSION A(M1,M1),B(M11),X(M1,M5),VAL(M1),ALFA(M11,M11) 

 

      FLAG=1 

      DO 109 I=1,NN 

      DO 109 J=1,NN 

      ALFA(I,J)=A(I,J) 

  109 CONTINUE 

 

C***  Solution of system equations. 

      DO 200 IT=1,M5 

      IF(IT.GT.1) THEN 
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      DO 210 I=1,NN 

      DO 210 J=1,NN 

      A(I,J)=ALFA(I,J) 

  210 CONTINUE 

      ENDIF 

 

      DO 110 I=1,NN 

      X(I,IT)=0.0 

      B(I)=-A(I,NN) 

      A(I,I)=A(I,I)-VAL(IT) 

  110 CONTINUE 

 

      N=NN-  

C***  Gaussian elimination 

      DO 170 K=1,N-  

 

C***  Pivoting routine 

      IF(A(K,K).EQ.0.0)THEN 

      K1=0 

      DO 121 L=K+1,N 

      IF(A(L,K).NE.0.0)K1=L 

      IF(K1.EQ.L)GO TO 130 

  121 CONTINUE 

  130 DO 140 J=1,N 

      AS=A(K,J) 
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      A(K,J)=A(K1,J) 

      A(K1,J)=AS 

  140 CONTINUE 

      BS=B(K) 

      B(K)=B(K1) 

      B(K1)=BS 

      ENDIF 

 

      IF(A(K,K).EQ.0.0) THEN 

      WRITE(*,*) 'Divide by zero in subroutine SIL' 

      FLAG=0 

      RETURN 

      ENDIF 

 

      M=K 

      DO 170 I=M,N-  

      R=A(I+1,K)/A(K,K) 

      B(I+1)=B(I+1)-R*B(K) 

      DO 170 J=M,N 

      A(I+1,J)=A(I+1,J)-R*A(K,J) 

  170 CONTINUE 

 

C***  Backward substitution 

      X(N,IT)=B(N)/A(N,N) 

      DO 190 I=N- , ,-  
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      SUM=0.0 

      DO 180 J=I+1,N 

      SUM=A(I,J)*X(J,IT)+SUM 

  180 CONTINUE 

      X(I,IT)=(B(I)-SUM)/A(I,I) 

  190 CONTINUE 

      X(NN,IT)=    

  200 CONTINUE 

      RETURN 

      END 

C******************************************** 

C***  This subroutine arrange the eigenvectors. 

 

      SUBROUTINE PNATF(A,DOF,NEI,NEJ,EE,WD,PHID,THID,M1,M4,M5,M6, 

     +M7,M8,NODE) 

      INTEGER DOF,COUNT,EE,ELEMENT 

      PARAMETER (M11=500, M66=121, M55=7, M44=180) 

      DIMENSION 

A(M1,M5),W(M66,M55),PHI(M66,M55),THI(M66,M55),NX(M11), 

     

+EE(M4,M8),NODE(M4,M7),WD(M5,M6,M6),PHID(M5,M6,M6),THID(M5,M6,

M6), 

     +WF(M44,M55),PHIF(M44,M55),THIF(M44,M55) 

 

      NE=NEI*NEJ 

      NODES=NODE(NE,3) 
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      NALL=3*NODES 

 

      COUNT=0 

      DO 310 I=1,NEJ 

      DO 310 J=1,2 

      L=NODE(I,J) 

      DO 310 K=1,3 

      COUNT=COUNT+1 

      NX(COUNT)=EE(L,K) 

  310 CONTINUE 

      DO 314 J=3,4 

      L=NODE(NEJ,J) 

      DO 314 K=1,3 

      COUNT=COUNT+1 

      NX(COUNT)=EE(L,K) 

  314 CONTINUE 

 

      N=2 

      DO 315 I=NEJ+1,NE 

      J=1 

      L=NODE(I,J) 

      DO 311 K=1,3 

      COUNT=COUNT+1 

      NX(COUNT)=EE(L,K) 

  311 CONTINUE 
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      IEQ=N*NEJ 

      IF(I.EQ.IEQ) THEN 

      N=N+1 

      J   

      L=NODE(I,J) 

      DO 319 K=1,3 

      COUNT=COUNT+1 

      NX(COUNT)=EE(L,K) 

  319 CONTINUE 

      ENDIF 

  315 CONTINUE 

       

      DO 31 I=DOF+1,NALL 

      DO 31 J=1,M5 

      A(I,J)=0.0 

   31 CONTINUE 

 

      DO 330 K=1,M5 

      DO 330 I=1,NALL 

      IF(NX(I).EQ.0) THEN 

      DO 340 J=NALL-1,I,-  

      A(J+1,K)=A(J,K) 

  340 CONTINUE 

      A(I,K)=0.0 

      ENDIF 
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  330 CONTINUE 

 

      DO 350 K=1,M5 

      I1=1 

      DO 350 I=1,NALL,3 

      W(I1,K)=A(I,K) 

      PHI(I1,K)=A(I+1,K) 

      THI(I1,K)=A(I+2,K) 

      I1=I1+1 

  350 CONTINUE 

       

      DO 380 K=1,M5 

      PW=0.0 

      PP=0.0 

      PT=0.0 

      DO 390 I=1,NODES 

      PW=MAX(ABS(W(I,K)),PW) 

      PP=MAX(ABS(PHI(I,K)),PP) 

      PT=MAX(ABS(THI(I,K)),PT) 

  390 CONTINUE 

 

      IF(PW.GT.0) THEN 

      DO 402 I=1,NODES 

      W(I,K)=W(I,K)/PW 

  402 CONTINUE 
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      ENDIF 

      IF(PP.GT.0) THEN 

      DO 403 I=1,NODES 

      PHI(I,K)=PHI(I,K)/PP 

  403 CONTINUE 

      ENDIF 

      IF(PT.GT.0) THEN 

      DO 404 I=1,NODES 

      THI(I,K)=THI(I,K)/PT 

  404 CONTINUE 

      ENDIF 

  380 CONTINUE 

 

      DO 515 N=1,M5 

      I1=0 

      DO 510 I=1,NEJ 

      DO 510 J=1,2 

      L=NODE(I,J) 

      I1=I1+1 

      WF(L,N)=W(I1,N) 

      PHIF(L,N)=PHI(I1,N) 

      THIF(L,N)=THI(I1,N) 

  510 CONTINUE 

      I=NEJ 

      DO 514 J=3,4 
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      L=NODE(I,J) 

      I1=I1+1 

      WF(L,N)=W(I1,N) 

      PHIF(L,N)=PHI(I1,N) 

      THIF(L,N)=THI(I1,N) 

  514 CONTINUE 

 

      M=2 

      DO 515 I=NEJ+1,NE 

      J=1 

      L=NODE(I,J) 

      I1=I1+1 

      WF(L,N)=W(I1,N) 

      PHIF(L,N)=PHI(I1,N) 

      THIF(L,N)=THI(I1,N) 

      IEQ=M*NEJ 

      IF(I.EQ.IEQ) THEN 

      M=M+1 

      J=3 

      L=NODE(I,J) 

      I1=I1+1 

      WF(L,N)=W(I1,N) 

      PHIF(L,N)=PHI(I1,N) 

      THIF(L,N)=THI(I1,N) 

      ENDIF 



146 

 

  515 CONTINUE 

 

      DO 425 K=1,M5 

      DO 425 I=1,NEI+1 

      IF(I.GT.NEI) THEN 

      I1=NEI 

      ELSE 

      I1=I 

      ENDIF 

      ELEMENT=(I1-1)*NEJ+1 

      IF(I.GT.NEI) THEN 

      LMIN=NODE(ELEMENT,1) 

      ELSE 

      LMIN=NODE(ELEMENT,2) 

      ENDIF 

      LMAX=LMIN+NEJ 

      DO 410 L=LMIN,LMAX 

      J=L-LMIN+1 

      WD(K,I,J)=WF(L,K) 

      PHID(K,I,J)=PHIF(L,K) 

      THID(K,I,J)=THIF(L,K) 

  410 CONTINUE 

  425 CONTINUE 

      RETURN 

      END 
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C******************************************* 

C***  Arrange critical loads in descending order. 

 

      SUBROUTINE PRINT(VAL,DOF,NLOAD,W,PHI,THI,NEI,NEJ, 

     +M1,M5,M6) 

      PARAMETER(M11=11) 

      INTEGER DOF 

      DIMENSION VAL(M1),W(M5,M6,M6),PHI(M5,M6,M6),THI(M5,M6,M6), 

     +X(M11),Y(M11) 

 

   20 FORMAT(I3,1X,7(F8.4,2X)) 

 

C***  Write results 

      IF(NLOAD.GT.DOF) NLOAD=DOF 

      DO 310 I=1,NLOAD 

      WRITE(6,20)I,VAL(I) 

  310 CONTINUE 

 

C***  Arrange the eigenvectors. 

 

      DO 100 J=1,NEJ+1 

      X(J)=(J-1.0)/NEJ 

  100 CONTINUE 

 

      DO 101 I=1,NEI+1 
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      Y(I)=(I-1.0)/NEI 

  101 CONTINUE 

 

C     Arrange the eigenvectors. 

 

   21 FORMAT(F4.2,1X,8(F7.4,2X)) 

   23 FORMAT(5X,8(F5.2,4X)) 

   22 FORMAT('Buckling load',2X,7(F7.4,2X)) 

C***  write buckling modes (eigenvectors) 

      WRITE(6,*) 

      WRITE(6,*)' * The first seven buckling modes are as follows:' 

 

      DO 1000 K=1,M5 

      WRITE(6,22) VAL(K) 

 

      WRITE(6,*) 

      WRITE(6,*)'* Out-of-plane normalized displacements W' 

      WRITE(6,23)(X(J),J=1,NEJ+1) 

      DO 322 I=1,NEI+1 

      WRITE(6,21)Y(I),(W(K,I,J),J=1,NEJ+1) 

  322 CONTINUE 

 

      WRITE(6,*) 

      WRITE(6,*)'* Normalized rotations PHI' 

      WRITE(6,23)(X(J),J=1,NEJ+1) 
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      DO 323 I=1,NEI+1 

      WRITE(6,21)Y(I),(PHI(K,I,J),J=1,NEJ+1) 

  323 CONTINUE 

 

      WRITE(6,*) 

      WRITE(6,*)'* Normalized rotations THI' 

      WRITE(6,23)(X(J),J=1,NEJ+1) 

      DO 3231 I=1,NEI   

      WRITE(6,21)Y(I),(THI(K,I,J),J=1,NEJ+1) 

 3231 CONTINUE 

      WRITE(6,*) 

      WRITE(6,*)'*************************************************' 

      WRITE(6,*) 

 1000 CONTINUE 

      RETURN 

      END 

 

 

 

      

                                          

 

 


