
Chapter 1 

Digital Systems and Binary Numbers 

1.1 DIGITAL SYSTEMS 

Digiul systems haw mob a pnominmt role in everyday life !bat wc & lo fcre pwcnttC& 
nological puiod as the digital age. Digital system ur used in mmmuniEatio% business mas- 
dons. m d k  muul.  s- midam. medical uedmen wcaIhcf monifoim thc InmnQ and 
&y n b c r c o m m r c ~  in&-soid. a& scimLilic cnlq-. wc haw tcleph-, dip- 
iml ulcviaioo. digiul v d  discs. digiul camcnn, handheld &vice& and, of wunr, digi- 
Irlccmnmten. T h c m t n r i l d a a m o f  the digital mmpuferisits gwmdity. It can follow .. . . 
a & ofhmnions. called a m o m  ih.L &ram & dven d&. The vaor can specify 
and odbaoge tk prom or tk da&ac&&g lo I& sp i r i c  ictd ~ecausc of this IlGbiliG, 
ged-plrpwe digitel compulua can @am n vrriefy of infomMimpmassinp laGu that 
noge over a wide s p m u m  of appl i ia t i~~~s~  

Onc charaneriotic of digital sysums is mcir ability lo m p m t  and msnipvllD diacma cl- 
rmmts of information. Any wr that is rrshicted to a &iu numbcr of elements ronuins dir- 
mete infomatino. Examples of disacu sets ur the 10 decimal digits. the 26 lcths of tho 
alph.bet, thc 52 playing card% and the 64 aq- of a chessboard. Early digital compuDrs 
werc used fornumnic compuwim. In this case, tk d i m e  elemem rverr the digita Rom 
this mlicaiiw. the tmn dinitalcomoutw wncncd. Diawe  elemcns of infomation ur rcP- ~ = = - ~  
mcmd in a &ml sysum by phy&d quan$cp called sipnalr. Bleetnd signals such k 
whagesand cummarc tho mm comma. Bleeaonic &vices called ~ i s u n ~ m  
in tk circuitry that implemnu tbuc si@. The br@s in mom ruescat-day eloermoic dig- 
iul s r n s  w just & d i m t e  values and ur herefom add to be blnnq A A- digit 
d c d  a bit. has k o  values: 0 and I. Discme elemcnb of information arc r rp~ca led  wilh 
.pups of bib called binary d s .  FW example, the decimal digits 0 khmugb 9 kc nprucncd 
in a digital system with a code of tow bits (e.g., the number 7 is represented by 0111). 



Through various techniques, groups of bits can be made to represent discrete symbols, whch 
are then used to develop the system in a digital format. Thus, a digital system is a system that 
manipulates discrete eIements of information represented internally in binary form. 

Discrete quantities of information either emerge h m  the nature of the data being processed 
or may be quantized from a continuous process. On the one hand, a payroll schedule is an in- 
herently discrete process that contains employee names, social security numbers, weekly 
salaries, income taxes, and so on. An employee's paycheck is processed by means of discrete 
data values such as letters of the alphabet (names), digits (salary), and special symbols (such 
as $1. On the other hand, a research scientist may observe a continuous pmess, but record 
only specific quantities in tabular form. The scientist is thus quantizing continuous data, mak- 
ing each number in his or her table a discrete quantity, In many cases, the quantization of a 
process can be performed automatically by an analog-to-digital converter. 

The general-purpose digital computer is the best-known example of a digital system. The 
major parts of a computer are a memory unit, a cened processing unit, and input-output units. 
The memory unit stores programs as well as input, output, and intermediate data. The central 
processing unit performs arithmetic and other data-processing operations as specified by the 
program. The program and data prepared by a user are transferred into memory by means of 
an input device such as a keyboard. An output device, such as a printer, receives the results of 
the computations, and the printed results are presented to the user, A digital computer can ac- 
commodate many input and output devices. One very useful device is a communication unit 
that provides interaction with other users through the Internet. A digital computer is a power- 
ful instrument that can perform not only arithmetic computations. but also logical operations. 
In addition, it can be programmed to make decisions based on internal and external conditions. 

There are fundamental reasons that commwcial products are made with digital circuits. 
Like a digital computer, most digital devices are programmable, By changing the program in 
a programmable device, the same underlying hardware can be used for many different appli- 
cations. Dramatic cost reductions in digital devices have come about because of advances in 
digital integrated circuit technology. As the number of transistors that can be put on a piece of 
silicon increases to produce complex functions, the cost per unit decreases and digital devices 
can be bought at an increasingly reduced price. Equipment built with digital integrated cir- 
cuits can perform at a speed of hundreds of millions of operations per second. Digital systems 
can be made to operate with extreme reliability by using error-correcting codes. An example 
of this strategy is the digital versatile disk (DVD), in which hgital information representing 
video, audio, and other data is recorded without the loss of a single item. Digital information 
on a DVD is recorded in such a way that, by examining the ccde in each digital sample before 
it is played back, any error can be automatically identified and corrected. 

A digital system is an interconnection of digital modules. To understand the operation of 
each digital module, it is necessary to have a basic knowledge of digitd circuits and their lugi- 
cal function. The first seven chapters of this book present the basic tools of digital design, such 
as logic gate structures, combinational and sequential circuits, and programmable logic devices. 
Chapter 8 introduces digital design at the register transfer level (RTL). Chapters 9 and 10 deal 
with asynchronous sequential circuits and the various integrated digital logic families. Chapters 
1 1 and 12 introduce commercial integrated circuits and show how they can be connected in the 
laboratory to perform experiments with digital circuits. 



A major trend in digital design mahodology is the use of a hardware description language 
(HDL) mdnrnbe and sirnuhe thc functionality of a digital circuil. An HDLrrscmbles .pro- 

- - -  
-&nulate a digilal system to verify its operation k i r e  hardwarc is built in. It IS also used in 
mnjmclion with logic synthesis tools to automale the design proeew. Because it is impman1 
lhat students bccamc familiar with an HDL-bawd design methodology. HDL desctiptmna of 
dieiral circuiuaretmsented thmuehout ihe bwk. ~h i l e the se  examvie; helo illustrate the fen. - - 
ums of an HDI- they also demonstrate the hest practicer used by industry to exploit HDLs. 
Ignorance of the* partices will kad tocute. but w m h h s .  HDL &Is that may dmulm a 
~henomcnon, but that carnot be s y n t h d  by design tools, or to models th.l wme silicon 

As &viouslv stsled. dieitd svstems m&ioukte discrete ouantities ofinfomation that are . ~ -  . ~~~~ 

repreinad in dinary form. w a n d s  used for caloulations 'may be expressed in the binary 
number system. Other discrete elements, including the decimal digits, are represented in b i  
codes. Digital circuits. also refund m as loeic c&uits. m e s s  data by means of binary loeic - - . - 
elements (logic gwa) ustng binary signals. Quantiuer arc s t u d  lo btnary (two-valued) war- 
age ekmnt s  (flipflops). The purport of this chapter is to inmrlun the various binary m- 
ceps as a frsme of r e f m ~  for funher smdy in thc succeeding chaptern. 

1.2 B I N A R Y  NUMBERS 

A decimal number such as 7.392 remsents a auantilv mual to 7 thousands. ~ l u s  3 hundnds, 
plus 9 lens. plus 2 unou. lh thourdods. hundids, c;. i e  powers of 10 ivied by thc psi- 

non of the coeff~nenls in the number. Tu be moreexact. 7.392 e a shonband notswn for what 
should be written as 

7 x 1 d + 3 x 1 d + 9 x 1 0 ~ + 2 ~ 1 0 ~  

However, the convention is lo write only the coefficients and, fmm their position, deduce the 
necessary powers of 10. In general, a number with a decimal point is represented by a series 
of EQfkicienIs: 

lhcoetficicnts aj are any ofthc 10 digits (O,1,2, . . . .9).  andthc subssrip~ value jgives the 
place value and, hence. the power of 10 by which the cocffcient must be multiplied. Thus, the 
preceding decimal number can be expressed as 

l d a ,  + lO%q + l d a J  + idol + lo'al + loOao + IO-'Q~ + 10-~a-z + 
Ihe decimal number svslem is said to be of base. or rodir. I0 because it uses 10 dicits and 

the ieflicients arc multiilied by powers of 10. The binmy ~ysnm is a diiTaent numi& sys- 
m. The cocfficiem of the binary nmnbe~ system have only Wo poslible valuer: 0 and I. 
Each coefficient a i  is multiolied bv 2j. and the nsults are sdded lo obtain the decimal equiv- 
alent of the numbe; The radix porn; (e g.. the decimal p in t  when 10 ir the radix) d ~ s t i n g ~ h u  
positive pu.crs of I0 from ncgati\e p o u m  of 10. For example, the decunal equ~valent of the 
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binary number llO10.11 k 26.75, as shown from the multiplication of thc c&6cicmts by pow- 
em of 2: 

In general, a number expressed in a base-r system has coefficients muhiplied by powers of r: 

The coefficients a] range in value from 0 to r - 1. To distinguish between numbers of differ- 
ent bases, we enclose the e c i e o t s  in -- and write a M p t  equal to fhe base used 
(exospt someti- for decimal mmbers, where the content makes it obvious that the base is  
decimal). An example of a bas5  nnmbes is 

The cotfficient values for base 5 can be only 0, 1,2 ,3 ,  and 4. The octal number system is a 
base-8 system that has eight digits: 0, 1,2,3,4,5,6,7. An example of an octal numkr is 
127.4. To determine its equivalent decimal value, we expand the number in a power series with 
abaseof& 

Note that the digits 8 and 9 cannot appear in an octal number. 
It is customary to borrow the needed r digits for the coefficients from the decimal system 

when the h e  of the number is I a s  than 10. The 1- of the alphabet am wed to supplement 
the 10 decimal digits when the base of the number is gmter than 10. For example, in the 
h@x&cW @ase-16) number system, the furst 10 digits am bwrowed from the decimal sys- 
tem. Tbe lecttts A, B, C, D, E, aod F musedfortbcdigits 10,11,12,13,14, a d  15, respec- 
tively. An example of a hex&chal number is 

Asnotedbefmthedigibinab'mnlrmberareabits. Whtllabitisequalto0,itdm.s 
not~butetotheslrmd~gtheMmversion.~~theaoovtrsion~binmrrytodec- 
i d  can bc obtained by adding only ttae numbers wiib powers of lwo oomqmdhg to the bits 
that am equal to 1. For example, 

There are four 1's in the binary number. The corresponding decimal number is  the sum of 
the four powers of two. The first 24 n u m h  obtained from 2 to the power of n are lhted in 
Table 1.1. In computer work, 2'' is referred to as K (kilo), 220 as M (mega), 2m as G -1, 
and 240 as T (tera). Thus, 4K = 2'' = 4,096 and 16M = Zz4 = 16,n7,216. Computer ca- 
pacity is usually given in bytes. A byte is equal to eight bits and can accommadate (i.e., repre- 
sent the code of) one keyboard character. Acomputer hard disk with four gigabm of storage 
has a capacity of 4G = 232 bytes (approximstely 4 billion bytes). 
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Table 1.1 
POWPI or Tvo 

I 2" It 2" " f 

0 1 8 256 I6 65536 
I 2 9 512 17 131.072 
2 4 10 1.024 18 262.144 
3 8 I1 2,048 19 524.288 
4 16 12 4.096 20 1.C48.576 
5 32 13 8,192 21 2,097,152 
6 64 14 16.384 22 4,194,304 
7 128 IS 32,768 23 8.388.608 

Arithmetic o~erationr with n u m k  in base r fallow the same rules an for decimal num- 
bers.When a bkeotherthan the familiar base 10 is used, one must be careful louse only the 
rallowable digits. Examples of addition. subnaction, and multiplication of two binary num- 
bers are m follows: 

augend: 101101 minuad: 101101 multiplicand: 1011 
addend: subtrahend: -100111 multiplier: 
sum: 10101OO difference: WOllO 1011 

WM) 

Thc sum of two b l n q  oumben 15 ~alruialcd b) the wme rule5 a ~n dcc~mal. except that 
the Wts of me rum m any rrgmliuficant partoon cao be oal) 0 or I Any rarr) a b t u e d  m s given 
uenoficaa pc>*tlnun I\ u\rul hy thc patr dlpllr unr. wgrufieant povson h~ghur Suhlnuuon ir 
slightly more complicated m e  rules are still the same as io decimal, except that the barmw in 
a given significant position adds 2 to a minuend digit. (A borrow in the decimal system adds 
10 ton minuenddigit.) Multiplication is simple: m e  multiplier digits are always 1 or0:there. 
fore, lhe panial pmducts are equal either to the multiplicand or to 0. 

1.3  NUMBER-BASE C O N V E R S I O N S  

The conversion of a numkr in  base r to decimal is done by expanding the number in a power 
series and adding all the terms as shown previously. We now present a general procedure for 
the reverse operation of convening a decimal number to a number in bax ,: If the n u m k i n -  
cludes a radix point, it is necessary to reparate the n u m k  into an integer p m  and a fraction 
pan, skeeachpartmust be canveneddifferently. The convexxion of adecimalinteger to a m -  
ber in base r is done by dividing the number and all sucewsivc quotimrs by r and accumulat- 
ing the remainders. This procedure is best illusvated by example. 
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Convert decimaT 41 to binary, First, 41 is divided by 2 to give an integer quotient of 20 and a 
remainder of 4. Then the quotient is again divided by 2 to give a new quotient and 
The process is continued until the integer quotient becomes 0. The coeficie#s of the desired 
binary number are obtained from the remainders as follows: 

Integer 
Quotient 

4112= 20 
20/2 = 10 

, .. 
Therefore, the answer is (41)10 = (aga4a3a2alaO)2 = (101001)2. 

The arithmetic process can be manipulated more conveniently ar3 fobws: 

0 
1 

0 

1 101001 = answer 

Integer 
41 
20 

10 

Conversion from decimal integers to any base-r system is similar ta this example, except l h t  
division is done by r instead of 2. 

Remainder 

I 
0 

EXAMPLE 1.2 

Convert decimal 153 to octal. The required base r is 8. First, 153 is divided by 8 to give an in- 
teger quotient of 19 and a remainder of 1. Then 19 is dividsd by 8 to give an integer quotient 
of 2 and a remainder of 3. Finally, 2 ia divided by 8 to give a quotient of 0 and o remainder of 
2. This process can be conveniently manipulated as follows: 



The con~err~on of r decimal fmoron m binaq IV rccompl~rhed b) r methud .#rnllar m IBI 
a c d  for lntrgcn Hnur\cr. mulupl,rat~on is "red in-read of d~vlrion. and lnvgen inntad of 
~malnderr arc srcumulated hgam. the method is best cxpliuned b) crmpl r  

Convcn (0.6875)10 to binary. Firs< 0.6875 ia multipiied by 2 to give an integer and a fraction. 
Thctl the new fraction is multiplied by 2 to gives new integer and a new freetion. The pmcers 
is continued mtii the fraction becomes 0 or until the number of dipits have sufficient accuracy. 
The cafficicntr of the binary number are obtained fmm the hregers as follows: 

Therefore, the answer is (0.6875)10 = (0.0-lo-20-30-4)2 = (O.lO1l)l. 
To conven a decimal fraction lo a number cnprcrwd in baw r, a similar procedure is used. 

However, mulliplication is by r instead of 2. and the coefficients found fmm the intsgm may 
range in value fmm 0 ro r - I instead of 0 and I 

0.513 x 8 = 4.104 

0.104 X 8 = 0.832 

0.832 X 8 = 6.656 

0.656 X 8 = 5.248 

0.248 X 8 = 1.984 

0.984 X 8 = 7.872 

The answer. w seven significant figures, is obtained from the integer pan of the products: 

(0.513)10 - (0.406517...)8 
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The conversion of decimal numbers with both integer and fraction parts is done by cm-  
verting the integer and the fraction separately and then combining the two answers. Using the 
results of Examples 1.1 and 1.3, we obtain 

(41.6875)10 = (101001.1011)2 
From Examples 1.2 and 1.4, we have 

(153.513)10 = (231.406517)g 

1 .4 OCTAL AND H E X A D E C I M A L  N U M B E R S  

The conversion from and to binary, mtal, and hexadecimal plays an impartant role in digital 
computers. Since = 8 and z4 = 16, each octal digit corresponds to three binary digits and 
each hexadecimal digit corresponds to four binary digits. The first 16 numbers in the decimal, 
binary, octal, and hexadecimal number systems are listed in Table 1 -2. 

The conversion from binary to octaI is easiIy accomplished by partitioning the binary num- 
ber into groups of three digits each, starting born the binary point and proceahng to the left 
and to the right. The corresponding octal digit is then assigned to each group. The following 
exampIe illustrates the procedure: 

(10 110 001 101 011 111 100 000 110)2 = (26153,7406)8 
2 6 1 5 3  7 4 0 6  

Table 1.2 
Numbers with DiiYerent Bases 

Decimal Blnay Octal Hexadecimal 
(base 10) (base 2)  (base 81 (base 161 
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Conversion h m  binary lo huadaclmal is similar.ucept thu the binary number isdivided into 
gmups of&, digits 

(10 11OO 0110 1011 . 1111 OO1O)r = (2C6B.R)16 
2 C 6 B  F 2 

The conesponding hexadecimal (or octal) digit for each group of binary digits is earily n- 
membered from the valves Usled in Table 1.2. 

Convenion fmm wlnl or hcudecimrl lo b~llary is done by revetsing the preccdin~ porr 
d m .  Each octal digit is mnvmed lo i o  W g i t  binary equivalent. Sirmlarly. each hem- 
dacdmal digit is convened lo nr fou~digil b i a q  equiralcnl. 7 % ~  p&. is illunwral ia 
the following examples: 

(673.3.124)s = (110 111 011 . 001 010 lW)z 
6 7 3  1 2 4  

and 

(306.D)t6 = (0011 MOO 0110 . i101)2 

3 0 6  D 

Binary numbers are difSeull m warl; with because they q u i r e  Uuee or four ti- as many 
digits as Wi daclmal equivalents. Panample. the binary n u m k  111111111111 is equiv.lmt 
lo decimal 4095. Howeva, digital computm UM binary numbers, aod it h sometimcr nsessary 
forthe humanoprstormus~tommmvoicatedi~ftly withthehehine bym~ansofswhnum- 
ben. Orr scheme that rains the b i i  systemin the computer, but reduces the numbaafdig- 
its the h u ~ n  must caasider, "utilizes the relationship b e e n  the b i  number ryrrem .Ild lk 
d or Mxdccimnl r m m .  87 this mnhd ibc humam thinks in lums of ostalabu&mal 
nvmbers and prf- the q u i d  rrmwrsion by i n s w o n  whsn direct mmmoniFdm with 
the machins is necessary. Thus the b i i  number 1111111 11111 bas 12 digits and is uprrssed 
in octal as 7777 (4 dig~ts) or in hexadecimal as EFF (3 digits). During mmmtmication behvecn 
H e  (aboutbbq numbur in the computed. the octal or hexadecimal-sentltion h mne 
deshbk because it can be expeared mare mmpscdy with a third or a qvafer of the n v m k  of 
d' i ts  qui red  for tbe equivalent binary numbrr. n u s ,  m m  corngum murls use citba arml 
or hexadecimal n u m k  to specify b i i  quanlities. The choice between &em is arbitrary. 
although hsiladecimaltendr to win out, since it can represent a byte wah tarodi@fs. 

1 . 5  C O M P L E M E N T S  

Complements are used in digital romputem lo simplify the submaion oprraton and for log- 
ical maoipulation. S i m p w g  openuions leads lo simpler. less erpnsive c h i t s  foimplnneot 
the operations. mere are hvo types of complements for each base.? system: the radir com- 
plement and the diminished radix mplemeot. The fust is ref& to an the 9 s  m p l e m m t  
and the s d  as the (r - 1)'s canplemeat. When the value of the base r i s  suMuued in the 
namc.thcrarotypesarercfmedroastbeZ'scomplnncntvld I ' s comp lnncn t f ab i i nm-  
k and the IO's complemenl and 9's complement for M m a l  numbem. 
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Dlmlnlshed Radix Complement: 
Given a number N in base r having n digits, the (r - 1)'s complement of N is defined as 
( rn  - 1) - N. For decimal numbers, r = 10 and r - 1 = 9, so the 9's complement of N i s  
(lon - 1) - N. In this case, 1W represents a number that consists of a single 1 followed by 
n 0's. 10" - 1 is a number represented by n 9's. For exarnpIe, if n = 4, we have lo4 = 10,000 
and lo4 - 1 = 9999. It follows that the 9's compIement of a decimal number is obtained by 
rmbtracting each digit from 9. Here ~ IZ  some numerical examples: 

The 9's complement of 546700 is 999999 - 546700 = 453288. 

The 9's cornplement of 012398 is 95999 - 012398 = 987601. 

For binary numbers, r = 2 and r - 1 = 1, so the 1's complement of N is (2" - 1 )  - N, 
Again, 2" is represented by a binary number that consists of a 1 followed by n O's, 2" - 1 is 
a binary number represented by n 1 's. For example, if n = 4, we have z4 = (10000)2 and 
z4 - 1 = ( 1 1 1 1 )2. Thus, the 1's complement of a binary n u m k  is obtained by subtracting 
e a ~ h  digit from 1. However, when subtractiag binary digits from 1, we can have either 
1 - 0 = 1 or 1 - 1 = 0, which causes the bit to change from 0 to 1 or from 1 to 0, respec- 
tively. Therefore, the 1's complement of a binary number is formed by changing 1's to 0's and 
0's to 1's. The following are some numerical examples: 

The 1's complement of 1011000 is 0100111. 

The 1's complement of 0101101 is 1010010. 

The ( r  - 1)'s complement of octal or hexadecimal numbers is obtained by subtracting 
each digit from 7 or F (decimal 15), respectively. 

The r's complement of an n-digit number N in base r is defined as r" - N for N # 0 and as 
0 for N = 0. Comparing with the (r  - 1)'s complement, we note that the r's complement is 
obtained by adding 1 to the ( r  - 1)'s complement, since r" - iV = [(rn - 1) - N] + 1. 
Thus, the 10's complement of decimal 2389 is 76 10 + 1 = 76 1 1 and is obtained by adding 1 
to the 9's-complement value. The 2's complement of binary 101 1 OO is 0 1001 1 + 1 = 010100 
and is obtained by adding 1 to the 1 's-complement value. 

Since 10 is a number represented by a 1 followed by n O's, 10" - N, which is the 10's corn- 
piemeat of N, can be formed also by leaving a l l  least significant 0's unchanged, subtracting 
the first nonzero least significant digit from 10, and subtracting dl higher significant digits 
fiom 9. Thus, 

the 10's complement of 012398 is 987602 

and 

the 1 O's complement of 246700 is 753300 
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The iO'scomplrmcnt nf the Srn number s ohlniacd by suboaeting 8 horn 10 in the least sig- 
~ n c a a  position m d  submacling all ulherd~gitr fmm 9. The IO'r eompkmcu of ibr -Dd 
ovrobn ir obtained by leaving the tuo leas signnfieanl O'r uochanged. rubIrafling 7 fmm 10. 
awl subtracting the othcr t h m  digits bom 9 

Similerl), Ihe TI complement ran be formed b) lea, ~ n g  all least sigmfifirant O'r and the tint 
I unchanged and replacing 1's ui!h 0'. and 0'1 wtth I'r in all othcr hgher signlfi~ant diglb. 
Por -PIC. 

theTsmmplemcntof IlOlIMisOOlOlW 

and 

the Z'rcomplementof01101il is lWiOD1 

The 2's complement of the 6m number is oMained by leaving the tuo least signifcant 0's and 
Ihe fusr I unchanged and than replacing 1's with 0's and O's with 1's in the o l b u  faur m a  sig- 
nificant digiu. The 2's complement of the second number is obtained by leaving the least rig. 
niticattt I unchanged and complementing all other digiu. 

In the p v i a u s  definitions. it was asrumd that the numberr did n a  have a radix pin. If 
theoriginal number Nmntains 8 radix point. the p i n t  should k removed tcmpanrily in order 
w bmt the r's or ( r  - 1)'s complement.The radix pin t  is then &red to &e coiplnnent- 
Ed number in the m e  relative position. It is also wonh mentioning lhatthcmmplemcnt ofthc 
complcment restorer the number to its original value. To see this relationship. note that the r's 
complement of N is r" - N, so that the complcment of the complement is 
r" - (r" - N) = Nand is equal to the niginal number. 

Subtraction wlth Complements 
The direct method of rubtraction taught inelementary sehwlsuses the borrow concept. In lhis 
mehod. we b a r n  a I fmm a higher si&eant position when the minuend digit is r& 
than thesubtrahend digit. The method works well w k n  pople performsubtranian w i t h w r  
andpencil. However. when subaction is implemented with digilal hardware, Ihe mahod is lcrs 
efficient than the method that uses complemcnls. 

The subtrsction of two n-digit unsigned numbers M - N in base r can be done aa follows: 

1. Add the minuend M to the r's complement of the suhtrshend N. Mathcmuically. 
M + (r' - N)  = M - N + #"' 

2. If M m N. the sum will produce anmd carry r". Mich can be discardsd. what is left is 
the msult M - N. 

3. If M c N. the sum does not pmduce an end carry and is equal m r" - (N - M). 
whichis Iher'smmplementof (N - M).Toobraiotheansmr ioafimiBarfotm,takc 
the r's mmplement of the sum and place a negative sign in h t .  
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The following examples illustrate the procedure: 

Using 10's complement, subtract 72532 - 3250. 

10' s complement of N = + 96750 

Sum = 169282 

Discard end carry lo5 = - 100000 
Answer = 69282 

Note that M has five digits and N has only four digits, Both numbers must have the same num- 
ber of digits, so we write N as 03250. Taking the 10's complement of N produces a 9 in the most 
significant position, The occurrence of the end carry signifies that M 2 N and that the result 
is therefore positive. 

rn 

Using 10's complement, subtract 3250 - 72532. 

10's complement of N = +27468 
Sum = 30718 

There is no end carry. Therefore, the answer is -(lo's complement of 30718) = -69282. 
Note that since 3250 < 72532, the result is negative. Because we are &ding with unsigned 

numbers, there is really no way to get an unsigned result for this case. When subtracting with 
complements, we recognize the negative answer from the absence of the end carry and the 
complemented result. When working with papa and pencil, we can change the answer to a 
dgmd negative number in order to put it in a familiar form. 

Subtraction with complements is done with binary numbers in a similar manner, using the 
procedure outlined previously. 

Given the two binary numbers X = 10101M3 and Y = 1000011, perform the subtraction 
(a) X - Y and @) Y - X by using 2's complements. 
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(a) x = IOIOIW 
2's complement of Y = +- 

Sam = IOOlDOOl 
Discard end carry 2' = -10000000 

An-,: X - Y = WlODOl 

(b) Y =  1WM)lI 
2's complemmt of X = + 

Sum= 1101111 

n K ~ i s m e n d c s r r y . T h n c f m , t b e ~ r i r Y  - X  = -(2'acmnplenwtofl101111) = 
-WIwoI. 

SubcRnion of unsigned numbcls cso also be done by means of the (r  - 1)'s complement. 
Remember Ihu the ( r  - 1)'s complement is one l e s  lban the h eomplemeat. Because of 
this, the result of addiog tlle minuend to the romplement of the sukmhmdpmducss a sum &at 
is one less lhm the c a t  diffmnce when an end carry occun. Removing the end carry aod 
adding I to the sum is r e f d  to as so and-omundca~. 

Repat Example 1.7, but this rime using 1's complement. 

(a) X - Y = IOIOIW - 1WM)II 

X - 10101w 

1's complement of Y = +- 
sum-  lWlWM) 

1 Ed-amund carry = +- 
Anm'er: X - Y = WIODOI 

(b) Y - x = 1000011 - 1010100 

Y =  l ~ l l  

1's com lement of X = +- P 
Sum = 1101110 

T h n c i s n o m d c a r r y . ~ ~ . b e s o m r w e r i s Y  - X = -(l'nmmplencnfof1101110) = 
- W 1 ~ 1 .  

Notethat thenegative mylt ir  obrsincd by taking ihc I'n complement of the sum, since Ibis is 
the t y p  of eomplmvnt used. T k  @urc with end-amund csrry is alw applicsbh to sub- 
vaning unsigned decimal numbers wilh 9's complement. 



1.6 SIGNED BINARY NUMBERS 

Positive integers (including zero) can be represented as unsigned numbers. However, to rep- 
resent negative integers, we need a notation for negative values. In ordinary arithmetic, a a g -  
ative n u m b  is indicated by a minus sign and a positive nmker by a plus sign. Because of 
hardwm limitations, computers must represent everything with binary digits. It is customary 
to represent the sign with a bit placed in the leftmost pition of the number. The convention 
is to make the sign bit 0 for positive and 1 for nemve. 

It is important to re& that both signed and unsigned binary numbers consist of a string 
of bits when represented in a computer. The user determines whether the number is ~igned or 
unsigned, If the binary n u m k  is signed, then the leftmost bit represents the sign and the rest 
of the bits represent ?he number. If the binary number is assumed to be unsigned, then the left- 
most bit is the most simcant bit of the number. For example, the string of bits OlOO1 can be 
considered as 9 (unsigned binary) or as 4-9 {signed binary) because the leftmast bit is 0. Tbe 
string of bits 1 1001 represents the binary equivalent of 25 when consided as au unsigned 
number and the binary equivalent of -9 when considered as a signed number. This is because 
the 1 that is in the leftmost position designates a negative and the other four bits represent bi- 
nary 9. Urnally, there is no confusion in identifying the bits if the type of representation for the 
number is known in advance. 

The representation of the signed numbers in the 1s t  example is referred to as the signed- 
magnit& convention. In this notation, the number consists of a magnitude and a symbol (+ 
or -) or a bit (0 or 1) indicating the sign. This is the representation of signed ntunbers used in 
o r d i n q  arithmetic. When dthmetic operations are implemented in a computer, it is more 
convenient to use a different system, referred to as the signed-complemnr system, for rep= 
senting negative numbers. In this system, a negative number is indicated by its complement. 
Whereas the signed-magnitude system negates a number by changing its sign, the signed-corn- 
plement system negates a number by taking its complement. Since positive numbers always start 
with 0 (plus) in the bftmost position, the complement will always start with a 1, indicating a 
negative number. The signed-complement system can use either the 1's or the 2's complement, 
but the 2's complement is the mast common, 

As an example. consider the number 9, represenmi in binary with eight bits. +9 is repre- 
sented with a sign bit of 0 in the leftmost @tion, followed by the binary equivalent of 9, 
which gives 00001001. Node that all eight bits must have a *, therefore, 0's are hmkd fol- 
lowing the sign bit up to the first 1. Although there is only one way to qraenf  +9, the= are 
three different ways to repsent -9 with eight bits: 

signed-magnitude representation: 
signed- 1 's-complement repsentation: 

In signed-magnitude, -9 is obtained h m  $9 by changing the sign bit in &e leftmost position 
from 0 to 1. In signed-1's complement, -9 is obtained by complementing alI the bits of +9, 
including the sign bit. The signed-2's-complement representation of -9 is obtained by taking 
the 2's complement of the positive number, including the sign bit. 



Table 1.3 
g n r d  Wm'y Numbnr 

Slgmd-2's Sbmd-1 's  S1gn.d 
Decimal Compl-nt Compkment Magnkudm 

+7 0111 0111 0111 
+6 0110 0110 0110 
+5 0101 0101 0101 
+4 OIW OlW OlW 
+ 3  WII W11 Wll 
+Z 0010 W10 W10 
+ I  WOI WOI WOI 
+O MW MW MW 
-0 - 1111 IWO 
- I  1111 1110 LWI 
-2 1110 1101 1010 
-3 LIOl 1100 loll 
-4 IIW 1011 1100 
-5 1011 LO10 1101 
-6 1010 IWI 1110 
-7 IWl LWO Ill1 
-8 lODO - - 

Tuhle I ? Il.!r all powble four-bll .tgncd htnary numhcrs I" the lhrrr rcprescnlalronr 
The equtvalcnl dee~mal numhcr 8- dl50 ~ h u u n  for rcfcrcnce Nolc that the po,llh\e numberr 
~n all three repre.entauonr s e  idcnu;al and hair  Ora lhc lcflmorl porltlon The slgocd-2's- 
complement system has only one representation for 0, which is always positive. The other 
two ryrremr have either a positive 0 or a negative 0, something not encountered in ordinary 
arithmetic. Nolc t h a  all negative numbers have a 1 in the leflmort bit position: lhat ia the 
way we disrineuish them from the oositive n u m b .  Wilh faur biu. we can remesent 16 binary - 
numben. In the stgned-mlgn81ude and #he I'r-complement repre,entauon,. Ihere are eight 
posltne numbers and clght negatlvc number,. ~ncludtng lwo zero,. In the l',.cornplement 
rcprerentallon, rherr are rnght po~nrnc number,. tncluding unr xru.  and eight negative 
numbers. 
The signed-magnitude system is used in ordinary arithmetic, but is awkward when em- 

ployed in cornpuler arithmetic b e c u e  of the separatehandling afthe sign and the mapniNde. 
Therefm. the signed-complement systemis normally used. The 1's complement i m p %  some 
diffcullics and is seldom used for arithmetic ooerations. It is useful as s lopical owration. - .  
stnee lhe change of I roOorO la I IS cqunalcnt to a l o g ~ a l  complement opreuon, ar MU be 
shown in the nekl chapter The direurrion of rlgnrd bnnary anlhmatc that follows deals ex- 
clustvely u ~ l h  !he ngned-2's-complement represenlation of neganve numben. Iiu lhc prc- 
cedures can be applied to lhe rigned-l'rsomplement ryslem by including the end-amundcsny 
as is done with unsigned numben. 



The addition of two numbers in the signed-magnitude system follows the rules of oPdinary arith- 
metic. If the signs are the same, we add the two magnitudes and give the sum the common sign. 
If the signs are different, we subtract the smaller magnitude from the Iarger and give the differ- 
ence the sign of the larger magnitude. For example, (+25) + (-37) = - (37 - 25) = - 12 
and is done by subtracting the smaller magnitude, 25, fram the larger magnitude. 37. and 
appending the sign of 37 to the result. This is a process that requires a comparison of the 
signs and magnitudes and then performing either addition or subtraction. The same procedure 
applies to binary numbers in signed-magnitude representation. In contrast, the rule for 
adding numbers in the signed-complement system dms not require a comparison or sub- 
traction, but only addition. The procedure is very simple and can be stated as follows for 
binary numbers: 
The addition of two signed binary n u m h  with negative n u m h  represented in signed- 

2'scomplement form is obtained from tfie addition of the two n u m k  including heir sign bits. 
A carry out of the sign-bit position is discarded. 

Numerical examples for addition follow: 

.T>:/ 

Note- negarive numb must be initially in 2's-cumplement form and hat if the sum ob- 
tained after the addition is negative, it is in 2's-complement form. 

In each of the four cases, the operation p e r f w  is addition with the sip bit included. 
Any carry o& of the gign-bit position is discadd, md negative redts are automatically in 2's- 
complement form. 

In order to obtain a correct answer, we must ensure that the result has a sufficient number 
af bits to accommodate the sum. If we start with two n-bit numbers and the sum occupies 
n + f bits, we say that an werflow occurs. When one performs the add&ion with paper and 
pencil, an overflow is not a problem, because we are not limited by the width of the page. We 
just add another 0 to a positive number or another 1 ta a negative n u m k  in the most sifl- 
cant position to extend the number to n + 1 bits and then perform the addition. Ovefflow is a 
problem in computers because the numbr of bits that hold a number is finite, and a result that 
exceeds the fmite value by 1 cannot be accommodated 

The complement form of representing negative numbers is unfamiliar to those used to the 
signed-magnitude system, To determine the value of a negative number in signed-2's comple- 
ment, it is necessary to convert the number to a positive number to place it k a more W a r  
form. For example, the signed binary n u m k  11 11 1001 is negative the leftmost bit is 
1. Its 2's complement is 000001 11, which is the binary equivalent of +7. We thefore m g -  
nize the original negative number to be equal to -7. 
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Subtraction of two signed binary numkrr when negative numbor are in 2's-complement farm 
is simple and can be stated as follows: 

Take me 2k somplemml of the subVahcnd (ioeludimg the sign bit) md add it  la tk minuend 
(including tbe sign hit). A c m y  o r  dthe hcrlgn-bit puatron is discarded. 

This pmeedun is adopted because a subtraction operation can be changed to an addition 
o p t i o n  if the sign of the subtrahend is changed, as is demonstrated by the following 
relationship: 

But changing a pasitive n u m b  to a oegative number is easily d m  by taking the 2's comple- 
ment of the posi!ive n u m k  The reveae is also true, because the cmnplement of a negative num- 
ber in complement form pmduces the equivalent positive number. To see this, consider the 
subasction (-6) - (-13) = +7. In binary witb eight bits, this opmtion is written as 
(1 11 11010 - 11 I IWII ) ,  The s u M m  is cbsnged toaddition by taking tk 2's complement 
of~subWhend(-l3),giving(+I3).hbin~.~isli111010 + W001101 = iOMMOiIi. 
Rem~~theeodcarrv.weobrain~mnea~w~r:OWOOlIl 1+71. 

It is ormb mhag binuy numbm in tk si@comple&nt ristem are added and ab 
rracvd by ihc same basic addition snd r u b c t i o o  rulci as unstgned ~ u m k r r .  Thnefurc, cam- 
puten need only one commun hardware cnrcuit to handle bath types of mthmcnc. The uuror  
pmgrammcr must i n t e r n  the results of such addition or subtraction dh%ently, depnding on 
whether it is mumd that the r~umbns are signed M unsigned 

1.7 B I N A R Y  CODES 

Digital rystemsose signals that have twodininet values andcircuit clementsthat have tworta- 
ble states. Thm is a direct analom amone binan, sieoals. binarv circuit elements. and binarv - . -  
dig&. A biiary number of n b g z .  for example, may be reprcknted by n b i  circuit el=: 
mmts. each having an omput signnl quivaknt to 0 u I .  Digital systems -rent m d  ma- 
nipvlalc n n  onl) binary numkrr, but also many other discmte ~lcmentr of i a fomt im.  Any 
dirnete element of information that is distinct among a gmup of quantities can be npnsented 
with a binary code (it.. a pmm of O's and 1's). The codes must be in b i w y  k a u s c ,  in 
today's technology, only c h i t s  h t  mpmcnl and manipulate panems of O's and 1's can be 
manufactured economically for use in computers. Hawever. it must be realized that b i i  
codes mrely change the s y n h h ,  not the meaning of the dements of information that they r e p  
resent. If we inspect the bin of a computer at mr&m we will fmd thPt m t  of tk 6m they 
m w n t  samc Noc of& infamuion mtherthao binarv nnmbns. . . 

An n-bll b~aar) code IS a group of n bola that assumes up to 2" dstmn combmat~onr of 1's 
and O'r, utth each combtnaltoa reprercnuap o m  clement of the set that s betng coded. A net 
of four ekmcnts can be & with two bits, with each ekment assigndone of the foUowing 
bit combinations: W. 01.10.11. A set of tight e lemnu requires a h e - b i t  code and a set of 
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16 elements requires a four-bit code. The bit combination of an n-bit code is de&mhed h m  
the count in binary from 0 to 2" - 1. Each element must be assigned a unique binary bit com- 
bina~on, and no two elements can have the same value; otherwise. the c d e  assignment will 
be ambiguous, 

Although the minimum number of bits required to code 2" distinct quantities is n, thm is 
no maximum number of bits that may be used for a binary code. For example, tbe 10 decimal 
digits can be coded with 10 bits, and each decimal digit can be assigned a bit combination of 
nine 0's and a 1 .  In t h i s  particular binary code, the digit 6 is assigned the bit combination 
0001000000. 

Although the binary number system is the most natural system for a computer, most people are 
more accustomed to the decimal system. One way to resolve tbis difference is to convert dec- 
imal numkrs to binary, perform all arithmetic calculatims in binary, and then convert the bi- 
nary results back to decimal. This method requires that we store decimal numbers in the 
computer so that they can lx converted to binary. Since the computer can accept only binary 
values, we must represent the decimal digits by means of a code that contains 1's and 0's. It is 
also possible to perform the arithmetic operations directly on dwimal numbers when they are 
stored in the computer in coded form. 

A binary code will have some unassigned bit combinations if the number of elements in the 
set is not a multiple power of 2. The 10 decimal digits form such a set. A binary code that dis- 
tinguishes among 10 elements must contain at least four bits, but 6 out of the 16 possible com- 
binations remain unassigned. Different binary codes can be obtained by arranging four bits 
into 10 distinct combinations. The code most comody  used for the decimal digits is the 
straight binary assignment listed in Table 1.4. This scheme is called binary-coded &chul and 
is commonly referred to as BCD. Other decimal codes are possible and a few of them are pre 
sented later in this section. 

Table 1.4 
#nary-C& CkrfmaI (1KD) 

Declmal BCD 
Symbol D m  

0 0000 
1 m1 
2 0010 
3 0011 
4 0100 
5 0101 
6 0110 
7 0111 
8 loo0 
9 1001 
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Table 1 4givt3thc four-n~t urlc k,r uncdecimal h g i t  A number with k dcomal dlglt~ will 
4t bu c.~i,~,.~ 3% ir rrplrhnlmd ncr, W . I I .  12 hlar ill N,II I(YII 1~1in. 

Y ith each eruu~  uf 4 btlb re~rrssntcne one decimal dlell. A dccnmal number in RCD 15 lllr - .  - - 
same rr irr equivalent b i n y  oumbcr whso the nvmbsr is k h s n  0 and 9.ABCD num- 
ber greater Ulan lolooks different from its equivalent binary n u m b s  even though both con- 
tain 1's and O'r. Moreover, the b i n q  combinations 1010 thmugh 11 11 are not used and have 
no meaning in BCD. Consider decimal 185 and its corresponding value h BCD and b i n q :  

(185)10 = (0001 l000OIOl)aco = (IOl1IWL)~ 

The BCD value has 12 bits to encode the characters of the decimal value, but the equivalent 
binary number needs only 8 bits. It is obvious h t  the reprereotatian of a BCD number needs 
more bits than its equivalent binary value. However. t h e  is an advantage in the me of deci- 
mal numbers, because computer input and output dam am generated by people who use thedec- 
i d  system. 

It is imporrant to realize that BCD numbers are decimal numbers and not binary numbers, 
although they me bits in theirrepresentation. The only difference between a decimal number 
and BCD is that decimals are written with the symbols 0. 1.2, . . . , 9  and BCD numbers use 
the binary code 0000. W01.0010. . . . . 1001. Ihe decimal value is exactly the same. Decimal 
LO is represented in BCD with eight bits a 0001 0000 and deeimal I5 as W0I 0101. The ca- 
responding b'- values are 1010 and 11 11 and have only four bi-. 

BCO Addltlon 

Consider Ihe addition of nu0 decimal digits in BCD. togctha with a possible carry fmm a pre- 
vious less significant pair of digits. Since each digit doer not exceed 9. the sum cannot be 
grearcrthan9 + 9 + I = 19, withthe I being apnviouscarry. Suppose wesddtheBCDdig- 
iu  as if they were binary numbers. Then the binary rum will produce a result in the range 
from 0 to 19. In binary, this mnge will be fmm 0000 LO 10011, but in BCD, it is from 0000 to 
I 1001. with the first (i.e.. leftmost) 1 k ing  s e q  and the next four bitrbeingtheBCD sum. 
When the hioary sum is equal to or less than 1001 (without a carry), the comsponding BCD 
digit ir correct. However, when the binary sum is p a r e r  rhan or equal to 1010, the result is an 
invalid BCD digit. The additionof 6 = (0110)2 to Ule binary sumconverts it to the comctdigit 
and alro produces a carry as required. This is becaurc a c a y  in the most significant bit p o b  
tion of the binary rum and a decimal carry differ by 16 - 10 = 6. Consider the following 
three BCD additions: 

4 0100 4 0100 8 IW0 
+5 - += +s +m +9 1001 

9 1001 I2 1100 17 10001 
+OLIO +0110 
l W l 0  IOll l  

In each care, the two BCD digits arc added as if they were two binary numbers. If lhe binmy 
rum is greater than or equal la 1010. we add 01 10 to obtain the comet BCD sum and s carry. 
In the fint example, the sum is equal to 9 and is the correct BCD sum. In the second example. 
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the binary sum produces an invalid BCD digit. The addition of 01 10 produces the correct BCD 
sum, OO1O he., the number 21, and a carry. In the third example, the b i i  sum pdwes a carry. 
This condition occurs when the sum is greater than or equal to 16. AIthough the other four bits 
are less than 100 1, the binary sum requires a correction because of the carry, Adding 01 10, we 
obtain the required BCD sum 0 11 1 (i.e., the number 7) and a BCD carry, 

The addition of two n-digit unsigned BCD n u m b  follows the same prwdure. Consider 
the addition of 184 t 576 = 760 in BCD: 

BCD '1 1 
0b01 1000 0100 184 

+0101 0111 0110 +576 --- 
Binarysum 0111 10000 1010 
Add 6 0110 0110 - - - -  
BCD sum 0111 0110 0000 760 

The fmt, least significant pair of BCD digits produces a BCD digit sum of 0000 and a carry 
for the next pair of digits. The second pair of BCD digits plus a previous carry pruducm a digit 
sum of 01 10 and a cany for the next pair of digits. The third pair of digits plus a carry p d u e s  
a binary sum of 0 11 1 and does not require a corntion. 

The representation of signed decimal numbers in BCD is similar to the repreamtation of signed 
numbers in binary. We can use either the familiar signed-magnitude system or the signedcom- 
plement system. The sign of a decimal number is usually represented with four bits to conform 
to the four-bit code of the dwbd digits. It is customary to designate a plus with four 0's and 
a minus with the BCD equivalent of 9, which is 1001. 

The signd-magnitude system is seldom used in computers. The signed-complement system 
can be either the 9's or the 10's complement, but the 10's complement is the one most often 
used. To obtain the 10's complement of a BCD number, we first take the 9's complement and 
then add 1 to the least significant digit. The 9's complement is calculated from the subtraction 
of each digit born 9. 

The procedures developed for the signed-2's-complement system in the previous section 
also apply to the gigmd-10's-complement system for decimal numbers. Addition is done by 
summing all digits, including the sign digit, and discar- the end carry. This operation 
assumes that all negative numbers are in 10's-complement form. Consider the addition 
(+375) + (-240) = + 135, done in the signed-complement system: 

The 9 in the lehost position of the second number represents a minus, and 9760 is the 10's 
complement of 0244. The two numbers are added and the end carry is discarded to obtain 
+ 135. Of course, the decimal numbers inside the computer, including the sign digits, must be 
in BCD. The addition is done with BCD digits as described previously. 
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The subtraction of decimal numbers, either unsigned or in the signed-10's-complement 
svstem. is the same as in the binarv care: W e  the 10's comnlement of the subtrahend and add 
rlto the m r n d  Many cornpunk have sp8.d  bardware ;o perform anUunelie ualeulatloos 
dimUy with decimal n u m b  in HCl, lk user of the computer can specify plwogrammed 
iosmrtims to prfam the arilhnvtie opratinn witb d e c i d  numberr dimly. without having 
to convert them to binary. 

Other Decimal Coda 

Binary codes for decimal digits q t t i l r  a minimum of four bitspdigit. Many different codes 
can be formulated by arranging four bits into 10 distinct combinatlona. BCD and thme other 
repressntative codes sle shown in Table 1.5. Each code uses only 10 out of a possible I6 bit 
eombmations that can be arranged with four bib. The other six unused combinations have no 
meaning and should be avoided 
BCD and hc 2421 code an examples of weighted e d s .  In a weigh&&, each bh pmiti'an 

h a s s i g n e d a w i ~ g ~ i n a u h a w a y t h a t e a c h ~ t ~  kwaluncdby.ddiihcweights 
of an hc 1's in the ccded combilmim. The BCD mdc bar. wights of 8.4.2. and I, which coat- 

apandtohcpaver.of-(~~valuerofeach bit.% bit arsigomentOll0, foruample, is luaprrced 
bythewei&torrpnMlt&cimal6keau~8 X 0 + 4 X 1 + 2 X 1 + 1 X 0 = 6.Thcbit 
mmhinatian 1101, whol weighed by the mpctive digits 2421, giws h d e e i d  equivalent of 
2 X 1 + 4 X 1 + 2 X 0 + 1 X 1 = 7. Note that nome digits can be coded in hvo prible  
ways in the 2421 code. For instance. d s i  4 can be assigned to hit combination OlW or 1010, 
sim bMh combinations add up LO a total weight of4. 

Table 1.5 
F o u r D ~ U n q C o d s ( b r h r ~ D ! g I U  

0 WOO mm MI1 ow0 
I WOI WOl OIM 0111 
2 MIO ml0 0101 0110 
3 0011 0011 0110 0101 
4 0100 OIW 0111 0100 
5 0101 loll lMYl 1011 
6 0110 1100 IW1 1010 
7 0111 11oi 1010 IWI 
8 IWO Ill0 1011 IWO 
9 IWI 1111 llM llll 

1010 0101 WOO WO1 
unuwd 1011 0110 WO1 MI0 
bit IIM 0111 WIO Dolt 
mmbi- 1101 1WO 1101 IIM 
nalianr 1110 IW1 1110 1101 

1111 1010 1111 1110 
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The 2421 and the excess-3 codes are examples of self-complemmhg &. Such & 
have tbe property that the 9's complement of a decbd number is OM directly by chang- 
ing 1's to 0's and 0's to 1's (i.e,, by komp1emenlh.g each bit in the pattern). For example, dec- 
imal 395 is represented in the excess-3 code as 01 10 1 lDO Im. The 9's complement of 6M 
is represented as 100 1 001 1 01 11, which is obtained h p 1 y  by complemmhg each bit of h e  
code (as with the 1's complement of binary numbers). 

The excess3 code has been used in some older computers because of its self-complement- 
ing proprty. Excess-3 is an unweighted code in which each coded cumbid011 is obtained from 
the corresponding binary value plus 3. Note that BCD code is not self-complemeflting. 

The 8,4, -2, - 1 c& is an exmple of assignin# both positive md negative weights to a 
decimal code, h this case, the bit combination 0110 is interpreted as k i m d  2 and is calcu- 
l a t e d f r o m $ X O + 4 X l + ( - 2 ) X 1 + ( - 1 ) X O = 2 .  

Gray Coda 

The output data of many physical systems are quantities that are continuous. These data m t  
be converted into digital forrn before they are applied to a digital system. Coatiwous or analog 
hfonmtiw is converted into digital form by meam of an ana log-Wta l  ~oflverter. It is smne- 
times convenient to use the Gray d e  shown in Table 1.6 to represent digital data that have been 
converted from analog data. The advantage of tbe Gray code over the stmight binary number 
sequence is that only we bit in the code group changes in going R.om one n u m b  to the next. 
For example, in going from 7 to 8, the Gray code changes from O1OO to 1100. M y  the first bit 
changes, from 0 to 1: the other b e  bits mmain the sama By contrast, with biaary numbers the 
change from 7 to 8 will be from 01 11 to 1000, which causes dl four bits to change values. 

Table 1.6 
Gray Code 

Grqlr Decllrral 
Code Equhahm 

0000 0 
OOO1 1 
0011 2 
0010 3 
0110 4 
0111 5 
0101 6 
0100 7 
1100 8 
1101 9 
1111 10 
1110 11 
1010 12 
1011 13 
1001 14 
loo0 IS 
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The Gray code is uxdin applications in which the normal sequence of binary numbns may 
pmducc an error or ambiguity during the transition fmm one number to the next. If binary 
numbers are used. achanee. for cxamnle. from 01 11 to IWO mav d u c e  an inlwwdiate er- 
m-r number 1W1 il ;he value of& righumst bit taker longe; to chanr  than do the Val. 
ucs of the a k  three bits. 7he Gray ccdc cltm~nrter this problem. stm only o w  bit changes 
its value during any tramition between two numben. 

A typical application of the Oray code is the representation of analog data by a continu- 
ouo change in the angular position of s rhafi. The shaft is partitioned into segments, and 
each segment is assigned a number. If adjacent segments are made to cornspond with the 
Gray-code squence, ambiguily is eliminated belween the angle of the shah and the value 
encaded by the senror. 

ASCII Character Code 

Many applications of digital computers require the handling not only of numbers, but also of 
other characters or symbols. such as the leners of the alphatxt. For instance. an inuvance com- 
m v  with thousands of oolicvholders will use acomDutcr lo omcen its files. To reorewe the . . . , 
names and aher pmnnrnt m f m u o n .  ,I I\ necessary to fomwlate a bmry code f u  the let- 
ten of lhe alphabet In dd~tton. the same baary code must reprevnt numerals and qpclal 
charaners (such as S). An alphanumeric character set is a set of elements that includes the 10 
d a d  digis, the 26letvrr of the alphabet, and a numberof special characm. Such a act con- 
lains between 36 and 64 elements if only capilal letan arc included, or between 64 and 128 
elements if both uppercase and lowercase letters are included. In the first case, we need a bi- 
nary code of six bits. andin the second, we need a binary code of seven bits. 

The standard binary code for the alphanvmwic characten is the American Standad Code 
fw lnfwmation Interchange (ASCII). which uses seven bits to code 128 chsracters. as shown 
in Table 1.7. Tlu seven birr of the d c  ux designated by bl through b. with b the most sig- 
nificant bit. The leuer A. for exsmplc. is repwnted in ASCII a\ IMOOOl (column IW. mw 
WOI). The ASCII c d r  also contains 94 grdphic characm Ihat can be printed and 34 "an. 
printing characters usedfor various conval funcdons. The graphic Characters consist of the 26 
uppercase letten (A through Z), the 26 lowercase letten (a through 1). the 10 numerals (0 
Ihrovzh 9). and 32 soecial mintable characters. such iu W. *. and S. . . ~ ~  

TI; 3 i k n u o l  cdaraclcn are &signaled i nkc  ASCII tahle with abbreviated nams. They 
are listed again below the lable with their boctional names. Thcmnml characten are used for 
muting dam and arranging the printed text into a pscribd formu. There are three types of 
contmlcharacters: fonnaeffecmn. information m r a t o n .  andcommunication-canuol char- 
aclen. Format cffccton arc charscm that control the layout of printing. They include the fa- 
miliar ward processor and rypewrttcr eonuols such as backspace (BS), horhonul tabulatian 
(HT), and carriage reurn (CR). Informtion reparalorn ere uxd to wpmte the datainto divi- 
sions such as paragraphsand pages. They include characlerssuch iu recordxpmmr (RS) and 
file smamUU IF%. The communication-mud c b m a m  me useful donine the uansmisnim - 
of lext beween remote termanals. Exmplu of commumcauom-coml characters am STX 
tslan of lext) and ETX (end of lextl. whrh arc uscd to ham a text message transmud though 
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Table 1.7 
Amertcm Standard C&? hf I- I-* (ASCII) 

b a d 5  
b4b3bdl 000 001 010 011 100 101 110 Ill 

0000 NLn, D SP 0 @ P P 
- - ‘  OOO1 SOH DC1 I 1 A Q a 9 

010 STX DC2 2 3 R b r U 

0011 E m  DC3 # 3 C s C s - -  
0100 EOT DC4 $ 4 D T d. - t  

0101 ENQ NAK 5% 5 E U e 11 
0110 ACK SYN & 6 F V f v 
0111 BEL ETB 7 0 W I w I 

1000 BS CAN 8 H X- h x 
1001 En EM 1 9 1 Y i Y 
1010 LP SUB 1 J z j z 
1011 VT ESC + 9 K [ k 
1100 FF FS < L \ 1 
1101 CR 0s - M 1 m - - I. 
1110 SO Rs > N A n 

1 
h. 

11'11 SI  US ; 7 0 - 0 DBL 

Control ctsarrcterr 
. - 

NUL Null DLE Data-link escape 
SOH S m o f  hsading DC1 Device conml f 

. S T X  Startoftext DC2 Dtvlcacontm12 
' EI'X Endof text DC3 Devioe control 3 
: m  Endoffransmhsiw DC4 Dcvloeoon1rol4 * 

ENQ Enquiry NAK NepiivcachowMge 
ACK Acknowledge SYN Synchmmsidle 

" . BEL Bell 6TB Bnd-of-~ss iwbloe lr  
BS Backspaet CAN Cancel 
HT Horizontal tab EM Endofmedium . : 

LF Line fad I SUB Substitute - -. 

Y T V M  tab ESC Escape 
FP Form feed FS File separator < .  

CR q- GS -UP- 
SO Shift out RS - 
SI Shift in US Unit s q a a m  
SP SW DEL Delete 

ASQI is a seven-bit code, but most computers rnanipulm an eiat-bit quantity as a single 
unit called a byte. Therefore, ASCII characters most often are stored one per byte. The extra 
bit is sometimes used for other purposes, depending on the appl icah For example, wnae 
printers recognize eight-bit ASCII chapdcters with the most sipi6caflt bit s& to 0. An ~~ 
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128 eight-bit characterr withthe most significant bit set to 1 arr used for othersymbols, such 
as the Greek alphabet or italic type font 

Enor-DetMlng Code 
To detect e m n  in data communication and processing, an eighth bit is sometimes added to the 
ASCU character to indicate i b  padry. Aparily bir is an exw bit included with a message lo make 
the total number of 1's either even or odd. Consider the following two characters and their 
even and odd parity: 

With even parity With odd parity 
ASCII A = IWOOOl OlDwML 1IWOOOL 
ASCII T = 1 0 1 0 1 ~  11010iOO OiOlOlOO 

In each care, we inserr an extra bit in the leftmort position of the code to produce an even 
number of 1's in the character for even parity or an odd number of 1's in the character for 
odd parity. In general, one or the other parity is adapted, with even parity being mare 
common. 

The parit) bnt is helpful in dcvctinp crron duringthe tr~nsmiss~onoiinfomation fmmone 
laauon to another. This function I, handed by grneral~ng an cvco pant) brt at the soding cod 
for each character. The eight-bit chamten that include parity bits are transmitted to theirdes- 
tinanon. The parity of each character is then checked at the receiving end. If Ule parihi of the 
received ch&cter-is not even. then at least one bit has chaneedvalu~dudae the ~ m k s r i a n .  
Thrr method detects one. three. or any odd cumb~nat~on ufenorr in each character that I, mnr- 
maned An e>m combrnat~on of emn.  huuebcr. gw\ undutc~rud. md dduldll~cmd e m  dctec- 
tion coder may be needed to take care of that possibility. 

What is done after an error is detected depends on the particular application. One porri- 
bility is to request retransmission of the message on the assumption that the error was ran- 
dom and will not occur aeain. Thus. if the receiver detects a aarihr error. it sends back the . , 
ASCU NAK (negati,e acknouledge) control character conrirllng of an crcn-panty wght 
bits 10010101. If nc, unur i r  dctr.ctcd. the mccivur \und\ hack an ACK (ackno~lzdgu) tun- 

Iml character, namely. OW001 10 The rending end uill rrrpood to an NAK by uanrmtung 
the message again until the correct parity isreceived, lf,ifier a number of attempts, the 
transmission is still in ertor, a message can be sent to the operator to check for malfunctions 
in the uansmissiaa path. 

1.8 B I N A R Y  S T O R A G E  A N D  R E G I S T E R S  

The binary information in a digital computer must haves physical existence in same medium 
for storing individual bits. A b i ~ ~ y  CCN is a device that possesses two stable states and is ca- 
pable of storing one bit (0 or I) of information. The input to the cell receives cxcifatian rig- 
nals that set a to one of the two states. The output of the cell is a physical quantity thst 
distinguishes between the two states. The information stored in a cell is 1 when the cell is in 
one slabie state and 0 when the cell is in the otbn stable state. 
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Registerr 
A register is a group of binary cells. A register with n cells can store any discrete q h t y  of 
information that contains n bits. The state of a register is an n-tuple of 1's and O's, with each 
bit designating the state of one cell in the registet. The content of a regism is a Punction ofthe 
interpretation given to the information stored in it. Consider, for example, a 16-bit register 
with the following binary cormtent: 

A register with 16 cells can be in one of 216 possible states. If one assumes that the content 
of h e  register represents a binary integer, then the register can store any binary number from 
0 to 216 - 1. For the particular example shown, the content of the register is the binmy equiv- 
alent of the decimal n u m h  50,12 1. If one assumes instead that the register stores alphanu- 
meric characters of an eight-bit code, then the content of the register is any two meaningful 
characters. For the ASClI code with an even parity placed in the eighth most significant bit 
position. the register contains the two characten C (the h o s t  eight bits) and I (the right- 
most eight bits), If, however, one interprets the' content of the register to be four decimal dig- 
its represented by a four-bit code, then the content of the register is a four-digit decimal 
number. In the excess3 code, the register holds the decimal number 9,096. The content of the 
register is meaningless in BCD, because the bit combination 1100 is not assigned to any dec- 
imal digit. From this example, it is clear that a register can store discrete elements of infor- 
mation and that the same bit configuration may be interpreted differently for different types 
of data. . . 

A digital system is characterized by its registers and the components that perform data pro- 
cessing. In digital sy stems, a register transfer operation is a basic operation that consists of 
a transfer of binary information h m  one set of regbters into another set of registers. The 
transfer may be direct, from one register to another, or may pass through data-processing 
circuits to perform an operation. Figure 1.1 illustrates the transfer of infomation among reg- 
isters and demonstrates pictorialIy the transfer of binary information from a keyboard into 
a register in the memory unit. The input unit is assumed to have a keyboard, a control cir- 
cuit, and an input register. Each time a key is struck, the control circuit enters an equiva- 
lent eight-bit alphanumeric character code into the input register. We shall assume that the 
code used is the ASCII code with an odd-parity bit. The information b m  the input regis- 
ter is transferred into the eight least significant ce1Is of a processor register. After every 
transfer, the input register is cleared to enable tbe control to insert a new eight-bit cade 
when the keyboard is struck again. Each eight-bit character transferred to the processor 
register is preceded by a shift of the previous character to the next eight cells on its left. When 
a transfer of four characters is completed, the processor register is W1, and its contents are 
transferred into a memory register. The content stored in the memory register shown in Fig. 1.1 
came from the transfer of the characters "J," "0.'" "H," and " N  after the f a n  appropriate 
keys were struck - , I  



ACUa 1.1 
Transfer d lnformatlon m n g  r e g l a e n  

To pprocess discrete quantities of information in binary form, a compurer must be pro- 
vided with devices that hold the data to be processed and with circuil elements that manip- 
ulate individual bits of information. The device most commonlv used for holdins data is a 

~ ~~ - ~ 

register. Htnary rar~abler are rnan~pulated by means of dlgitll logic CIR.UI~S  Fbgure I.? 11. 
luarates the process of adding two 10-bit b~nary numben. The memor) ulut. whtch nor- 
mally consists of millions of registers. is shown with only three of its registers. The Dart of 
the processor unit shown consisis of three registers-RI.,?~. and ~3-torether with 
logic cmuit, that manip~late the blrs 01 ~ i a n d  R2 and transisr nnlo ~ j a  b ! n q  number 
equal to thew arithmetic Gum. M c m o ~  rcgl\terr rtorc infc,nnatlun and *re incapable of pro- 
cessing the two operands. However, the information stared in memory can be transferred to 
processor registen, and the naults obtained in messor reeisten can be transferred back into 
a memo? reglsler for storage untd needed aeatn The dlaprdm shows the content, of two 
operands tranrfemd from two memoq regtntcn nnlo R l  and R2 The dlgntal logrc elrcultr 
produce the sum. u hlch IS translemd to reglrter R3 The content* of R j  can nau be tran,- 
ferred back to one of the memmy registers, 
The la51 two examples demvnitralcd the iniurmatlon-nuw capabrltl~es ut a drg~ml r ) rum 

In a rlmple manner Thc xylslcr\ ofths ,y,tcm arc thr. bauu ~1r . rn r . a~  for stu"ng and holding 
the hlnary inf#~matwn.  D~yival lc,g~c ccn.utt* Ilrc,ue.\ thc b l n a ~  informatlon stored in rhe 
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registem, Digital logic circuits and registers are cavered in Chapters 2 6. The m a m y  
unit is explained in Chapter 7. The description of register opedons at the register tramfer 
level and the design of digital systems are covered in Chapter 8. . 1 

1.9 B I N A R Y  LOGIC 

Binary logic deals with variables that take on two discrete values and with o p d o n a  hat as- 
sume logical meaning. The two values the variables assume may be called by Merent name 
(true and false, yes and no, etc.), but far our p v ,  it is convenient to thiak in k m s  of bits 
and assign the values 1 and 0. The binary logic introduced in this sation is equivalent to an 
algebra called Boolean algebra. The formal presentation of Bwlem algebra is cwered in more 
detail in Chapter 2. The purpose of this section is to i n d u c e  Baolean algebra in a heuristic 
manner and relate it to digital logic circuits and binary signals. 
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B i i  logic consists of binary vsriables and a set of logical operatiom. The variables are desig- 
nated by leners of thealpha&, such as A, 6. C.x.y, i,etc., with each variable having moaodonly 
twodistinnpossibievalues: 1 and0,Them are three bariclogicalaperafionr: AND. OR andNOT 

1. AND: This owration is reureseated by a dot or by the absence of an operator. For 
. .  . ~ . - . . " .  

is interpreted to mean t b a  r = L if and only if x = 1 and y = 1: otherwise : = 0. 
(Remember that x, y, and z are binary variables and can be equal either to I or 0, and 
nothing clse.) 

2. OR: l t k  operationis r e p e n t e d  by aplur sign. For example. x + y = ;is read? OR 
yisequal toz ,"meaning~t r  = l i f x  = I o r i f g  = lo r i fbothx  = land). = ].If 
bothx = Oandv = 0,thcnz = 0. 

3. NOT: This operation is represented by a prime (sometimes by an overbar). For example. 
z' = r (or ? = r )  is read "not x is equal to 1." meaning that : is what x ir not. In other 
words. if x = 1. then r = 0. but if x = 0. Ulen .- = I. The NOT oDerat~an is also re- ~. 
fmcdto as the Eomp~cment operation, since it chsages a I to 0 and a o to 1. 

Binary logic resembles binary arithmetic, and the operations AND and OR have similar- 
ties to multi~lication and addition. resaeetivelv. In fact. the svmbols usedfor AND and OR are 
the same as those uud for muluphcauon and adhtton. Houever. b l n q  loge should not be mn- 
fu ,d  wtth binary mthmeuc. Ooc AuulJ reahra thdt an mthmcuc vmablc deugndar a num 
ber that may consist of maay digits. A logic variable is alwsys either 1 or 0. For example, in 
binsrv atilhmetic. we have 1 + 1 = 10 (read "one olus one is eaual to 2"). whereas in binaw 
logic, we have 1 - I = I (read "one OR one is equal to one", 

Fur each r'xnh~natrun of the \alms of randy, thcrc IS a saluc ol : rpeclficd b) the defim- 
lnonof the lnglcul operaiun. Defin8tiunr of lapcal upcratlunr ma) k I!\tcd in il cumpact form 
called tmrh ,able$. A truth able is s [able of all possible combinations of the variables. show- 
ine the relation between the valuer that the variables mav take and the result of the owration. - 
'lhc lruth tablcr f ~ r  the uperaltont AND and OR uilh \ariahlc\ .I and ).are ubtalned hy Ilamg 
all po<sahle valuesthalthe $mahlc\ may have ahcn romhbned in pair< For eachromb~nat~on. 
the result of the operatton is then listed in a reparate rou The truth tables for ASD. OR. and 
NOT are given i n ~ a b l e  1.8. These tables cleariy demonstrate the deftnition of the operatiom. 

Table 1.8 
Truth Toblrr of logic01 Operations 

AN0 OR NOT 
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Logic gates are electronic circuits that operate on one or more input signals to produce an 
output signal. Electrical signals such as voltages or currents exist as analog signals having 
values over a given range, say, 0 to 3 V, but in a digital system are interpreted to be either of 
two recognizable values, 0 or 1. Voltage-operated logic circuits respond to two separate volt- 
age levels that represent a binary variable equal to logic I or logic 0. For example, a partic- 
ular digital system may define logic 0 as a signal equal to 0 volts and logic 1 as a signal 
equal to 3 volts. In practice, each voltage level has au acceptable range, as shown in Fig. 1.3. 
The input terrninds of digital circuits accept binary signals within the allowable range and 
respond at the output terminals with binary signals that fall within the specified range. The 
intermediate region between the allowed regions is crossed only during a state transition. Any 
desired information for computing or conhl  can be operated on by passing binary signals 
through various combinations of logic gates, with each signal represeflting a particular binary 
variable. 

The graphlc symbols used to designate the b e e  types of gates are shown in Fig. 1.4. The 
gates are blocks of hardware that produce the equivalent of logic-1 or logic-0 output signals 

3 I Signal 
range for 
logic 1 

(a) Two-input AND gate @) Two-input OR gate (c) NOT gate or inverter 

FIGURE 1.4 
Symbols fw dl-l bgic d d t s  



" d l  1 1 0  0 

0 0 1 1  l k  

f i m . ~ ~  0 o r n o  0 

OR:r+y I I 1- 

j-,cyrr. 7 0  0 I 1 I 

RCWE 1.5 
I n p u t a t p u t  rlgnals for gates 

(a) T%ree.input AND p t  (b) Four-Input ORgrte 

MUIT 1.6 
Gates wlth r n u l t l p  Inputs 

11 inpa  logic q u i r n r r n t s  are saorficd The i n p  ssgnalr x and , m the AND and OR gates may 
curt m am of fow pasthk n m s  W. 10.11, or01 Thev mpul ~ ~ g n a l s  arc ,houo in Fig 1 5 to- 
g& with & &sponding oulput signal for w h  g*. The liming d&mm i l l u k  the re- 
r m o s e o f c s c h e a u l o ~ f w r ~ t  sirmalmmbinalim.Theh~2ontalaxisofktiminediam - . - - - 
rqrecmts ttme. and tk vmcal  mi^ shows the signal as it cnsnges benrnn ihe t ropasr~ble volt- 
rp levels. Ihe l w  level -nlr lopre 0. the high level l ~ c  1. The AND gate rerpnds wtth 
a l*u 1 a u w t  signal when bath input signals arc logic I .  The OR gnu responds uirh a logic I 
o & u t  s k d  if MY input signal is l&c I. Ihe NOT& is commonly referred toas an inveer. . .  - 
'& reas& for this n-is a~~ &I the oimal rermnre in Uw &x diaeram. which shows . . - .  - - 
lhal rhc outplt , ~ g d  mvms thc Iupc scmr of the Input s~enal 

AND and OR gates may hate more than two inputs. An AND gau wlth t h e  lnpuls and an 
OR gatc with four inputs arr shown in R g  1.6 The three-input AND gate mrpoodr with logic 
I oubut if all three inputs uc logic 1. The output pmduces logic 0 if MY input is logic 0. The 
fowinput OR gaususpmds with logic 1 if any input islo@c I: itsoutput bemmcs logic 0 only 
when eU inputs uc logic 0. 

PROBLEMS 

Anr- to p b h r  marked wiU1. l p p e ~  at the end of the bmk. 

1.1 List the octal sod hexadecimal numben fmm 16 to 32. Using A, 8. and C for the last Ihree 
digits. list tk nurnben fmm 8 lo 28 in base 13. 

1.F What is the exact number of bytes in a system lhal conrains (a) 32K byler. Ib) 64M bytes. and 
(E) 6.4G bytes? 



32 Chaptor 1 Dig'rtal Systems and Blnary Numbers 

1.3 Convert the following mlmbers with the indicated bases to decimal: 
(a)* (4310)s @I* (198)12 
(c) (73518 (d) (52516 

1 A What is the largeat binary n m k  that can be expressed with 14 bits? What are the equivalent dec- 
imal and hexadecimal nudnm? 

1 J* Determine the base of the numbers in each case for the following opt ions  to be correct: 
(a) 1412 = 5,  (b) 5 4 4  = 13. 
(c) 24 + 17 = 40. 

1.6* The solutions to the quadratic equatiun x2 - 11x + 22 = 0 are x = 3 and x = 6. What is the 
base of the numbers? 

1 .I* Convert the hexadecimal number 68BE to b h q ,  and then convert it from binary to mtd. 

15 Convert the deem number 431 to binary in two ways: (a) Convert W y  to binary; @) con- 
vert fist to hexadecimal and then from hemkciml to binary. Which methd is hkr? 

1.9 Express the following numbers in decimal: 
(a)* {10110.0101)2 Ibl* (l6-5116 
(c)* (26.24)* Id) (FAFA)16 
(e) . (1010.1010)2 

1 .I 8 Convert the fouowing binary numbers to hexackhd  and to dccimak (a) 1.10010, @) 110.010. 
Explain why the decimal mwer in (b) is 4 times that in (a), 

1.1 F Add and multiply the following numb without convert@ them to decimal. 
(a) Binary numbers 1011 and 101. 
(b) Hexadecimal numbers 2E aad 34. 

1.13 Do the following conversion probIems: 
(a) Convert decimal 27.3 15 to binary. 
@) Cdcculate the binary equivalent of 1 3  out to eight places. llm convert &om binary to dec- 

imal. How close is the resuIt ta 2/31 
(c) Convert the binary result in (b) into hexadecimal. Then convert the d to decimal. Is the 

answer the same? 

1.14 Obtah the 1 's and 2's complements of the following binary numbers: 
Ia) l(Mo@mO @) - 
(c) 11011010 Id) OlllOllO 
(e) lOOOO101 (f) 11111111. 

1 .I5 Emd the 9'8 mi3 the 10's complement of tbe following decimal numbers: 
(a) 52,784,630 0) 63,325,MW) 
(c) aooO,oa() Id) 00,ooo,ooo. 

'! \ 
1.1 6 (a) Find the 16's complement of BZFA. . - -  

(b) Convert B2FA to binary. 
(c) Find the 2's complement of the result in 0). 
(d) Convert the answer in (c) to hexadecimal and compare with the answer in (a). 
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1.17 Perform sublnelion on the given uodgned numben using the 10's cdmpiemmnt of the s u b  
hold. Where thehcresvlt should benegative. fiod its 1O'~complemenr and affix aminus sign. Ver. 
ify yarranswen. 
(a) 6,428 - 3.409 (b) 125 - 1.800 
15) 2.043 - 6.152 (d) 1,631 - 745 

1.18 Perfomsuhrractiononthsgivc. unsignedbinarynvmbenuringihe2'rcomplcmcntofh mh. 
Ihcnd.  Where the result shouldbe negative, find its 2's complcwnt and affix a minus sign. 
la) iW11 - iWOl (b) 1MX)IO - IWOII 
lc) IMI - IOIWO ld) 110000 - 10101 

1.19 The follov~ngdeclmlnumhrr are shown m r~gn.mngrutudr form -9.286 and -801 Convcn 
!hem to sxped.10 5-complcmml lam md Worm the folio-g operatloor lnolc tha the sum 
n -10.627 and inlmre, h e  dmts ad a samt ~-~ . 
(a) (+9,286) + (+801) - (b) (19,286) + (-801) 
le) (-9.286) + (+sol )  (d) (-9,286) + (-801) 

1.20 Conwn decimal +46 and +29 to binary. using the signed-2'a-complemnc rspvnfation and 
enough digits to accommodate the numbera. Then perform the binary equivalent of 
(+29) + (-49). (-29) + (+49),and(-29) + (-49).Converrhanswersbacktodecirml 
and venfy Ular they an correct. 

1.21 if the numbera (c9.742110 and (+641)m arc in signed mapirudc format. the i~  sum is 
(+10.383)~0 and requires five digits and a rign. Convcn the numbers to signcd.10'6-complc- 
men1 f o m d  find the followinc sums: 
(a) (+9.742) + (+MI)  (b) (+9.742) + (-641) 
(c) (-9.742) + (+Mi )  (dl (-9.742) + (-641) 

1.22 Convcn decimal 8.723 lo both BCD and ASCII ecdedes. For ASCII, an even psrily bit is lobe ap- 
prided at the kfl. 

1.23 Reprevst the unsigned decimal numbm 842 and 537 in BCD. and then show the steps neeeb 
wy to form their sum. 

1.24 Fmulatc a weighled binary code for tbe decimal digits. using weights 

la)*6.3. 1. I 

lb) 6.4.2, I 

1.25 Repsen1 the decimal number 5.137 in la) BCD. (b) crccnJ code. lc) 2421 code. and ld) s 
6311 rode. 

1.26 End lhc 9's eomplsmcnt of decimal 5.137 and express il in 2421 code. Show thsl h e  nsull is 
the 1's complement of Ihe answer lo (e) in Pmbicm 1.25. This demonstrates that the 2421 mie 
is self-complementing. 

1.n Auigr a b inqcode in someorderly manner lo the 52 pisying 4 s .  U% the mulimum number 
of bits. 

1.26 Wnw the erprraon 'G. B.ulc" ~n ASCII. "rang an c~ghl-h,l LC&. lnclvdc the p o d  and the 
>pare Trral ihc lcftmurl hhl sf each character a. r pmly hir 1h;h clghr-hl! code should hale 
even I)YII~ ~ ( ~ F o N c  BWIL w e  a 1% ucntun. malhcmauctan Uwlcan alrebra !omxluced m . . - 0 

the next chapter, bean his n n n . )  



1 .* Decode the following ASCII code: :;, t 

1 m 1 0  1101001 1101100 1101100 1000111 1100001 11101M) 1100101 1110011. 

.30_ The following is a string of ASCII characters whose bit pattems have ken converted into h a -  
decimal for cornpachess: 73 F4 E5 76 E5 4A EF 62 73. Of the eight bits in each pair of digits, 
the leftmost is a parity bit, The remaining bits are the ASCU code. 
(a) Convert the smng to bit form and decode the ASCIL it1 L r  

fi) Determine the parity used: odd or even? 

1.31* How many printing characters are there in ASCII? How many of them are special cbmcters 
(not letters or numerals)? 

'C( v 
1-3P What bit must be complemented to change an A& letter from capi'tal to hercase and vice 

versa? 

13p The state of a 12-bit register is 1000100101 11. What is its content if it represents 
(a) three decimal digits in BCD? 
(b) t h e  decimal digits in the excess-3 code? {p, ! 
(c) three decimal digits in the 84-2-1 c&? 
(d) a binary number? 

1 List the ASCII code for the 10 decimal digits with an odd parity bit in the l e h t  pition. 

1.35 By means of a timing diagram similar to Fig. 1.5, show the signah of ib aU@ f and g m Fig. P1.35 
as functiom of the tbree inputg a, b, and c. U%e dl eight psible  ambidions of a, b. and c. 

a b c  

4 I:, t 

mcum P 1 3 I  
I 

1.36 By means ofatimingdiagram sirnilat.toFig. 1.5, showthed~afsofkoutputsfarsdghFig. 
P1.36 as functions of the two inputs a and b. Use al l  four possible combinations of a and b. 
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