Chapter 1
Digital Systems and Binary Numbers

1.

1

DIGITAL SYSTEMS

Digital systems have such a prominent role in everyday life that we refer to the present tech-
nological period as the digital age. Digital systems are used in communication, business trans-
actions, traffic control, space guidance, medical treatment. weather monitoring, the Internet, and
many other commercial, industrial, and scientific enterprises. We have digital telephones, dig-
ital television, digital versatile discs, digital cameras, handheld devices, and, of course, digi-
tal computers. The most striking property of the digital computer is its generality. It can follow
a sequence of instructions, called a program, that operates on given data. The user can specify
and change the program or the data according to the specific need. Because of this flexibility,
general-purpose digital computers can perform a variety of information-processing tasks that
range over a wide spectrum of applications.

One characteristic of digital systems is their ability to represent and manipulate discrete el-
ements of information. Any set that is restricted to a finite number of elements contains dis-
crete information. Examples of discrete sets are the 10 decimal digits, the 26 letters of the
alphabet, the 52 playing cards, and the 64 squares of a chessboard. Early digital computers
were used for numeric computations. In this case. the discrete elements were the digits. From
this application, the term digital computer emerged. Discrete elements of information are rep-
resented in a digital system by physical quantities called signals. Electrical signals such as
voltages and currents are the most common. Electronic devices called transistors predominate
in the circuitry that implements these signals. The signals in most present-day electronic dig-
ital systems use just two discrete values and are therefore said to be binary. A binary digit,
called a bit, has two values: 0 and 1. Discrete elements of information are represented with

groups of bits called binary codes. For example, the decimal digits 0 through 9 are represented
in a digital system with a code of four bits (e.g., the number 7 15 represenited by O111).

2

Chapter 1 Digital Systems and Binary Numbers

Through various techniques, groups of bits can be made to represent discrete symbols, which
are then used to develop the system in a digital format. Thus, a digital system is a system that
manipulates discrete elements of information represented internally in binary form.

Discrete quantities of information either emerge from the nature of the data being processed
or may be quantized from a continuous process. On the one hand, a payroll schedule is an in-
herently discrete process that contains employee names, social security numbers, weekly
salaries, income taxes, and so on. An employee’s paycheck is processed by means of discrete
data values such as letters of the alphabet (names), digits (salary), and special symbols (such
as $). On the other hand, a research scientist may observe a continuous process, but record
only specific quantities in tabular form. The scientist is thus quantizing continuous data, mak-
ing each number in his or her table a discrete quantity. In many cases, the quantization of a
process can be performed automatically by an analog-to-digital converter.

The general-purpose digital computer is the best-known example of a digital system. The
major parts of a computer are a memory unit, a central processing unit, and input—output units.
The memory unit stores programs as well as input, output, and intermediate data. The central
processing unit performs arithmetic and other data-processing operations as specified by the
program. The program and data prepared by a user are transferred into memory by means of
an input device such as a keyboard. An output device, such as a printer, receives the results of
the computations, and the printed results are presented to the user. A digital computer can ac-
commodate many input and output devices. One very useful device is a communication unit
that provides interaction with other users through the Internet. A digital computer is a power-
ful instrument that can perform not only arithmetic computations, but also logical operations.
In addition, it can be programmed to make decisions based on internal and external conditions.

There are fundamental reasons that commercial products are made with digital circuits.
Like a digital computer, most digital devices are programmable. By changing the program in
a programmable device, the same underlying hardware can be used for many different appli-
cations. Dramatic cost reductions in digital devices have come about because of advances in
digital integrated circuit technology. As the number of transistors that can be put on a piece of
silicon increases to produce complex functions, the cost per unit decreases and digital devices
can be bought at an increasingly reduced price. Equipment built with digital integrated cir-
cuits can perform at a speed of hundreds of millions of operations per second. Digital systems
can be made to operate with extreme reliability by using error-correcting codes. An example
of this strategy is the digital versatile disk (DVD), in which digital information representing
video, audio, and other data is recorded without the loss of a single item. Digital information
on a DVD is recorded in such a way that, by examining the code in each digital sample before
it is played back, any error can be automatically identified and corrected.

A digital system is an interconnection of digital modules. To understand the operation of
each digital module, it is necessary to have a basic knowledge of digital circuits and their logi-
cal function. The first seven chapters of this book present the basic tools of digital design, such
as logic gate structures, combinational and sequential circuits, and programmable logic devices.
Chapter 8 introduces digital design at the register transfer level (RTL). Chapters 9 and 10 deal
with asynchronous sequential circuits and the various integrated digital logic families. Chapters
1T and 12 introduce commercial integrated circuits and show how they can be connected in the
laboratory to perform experiments with digital circuits.

Section 1.2 Binary Numbers 3

A major trend in digital design methodology is the use of a hardware description language
(HDL) to describe and simulate the functionality of a digital circuit. An HDL resembles a pro-
gramming language and is suitable for describing digital circuits in textual form. It is used to
simulate a digital system to verify its operation before hardware is built in. It is also used in
conjunction with logic synthesis tools to automate the design process. Because it is important
that students become familiar with an HDL-based design methodology, HDL descriptions of
digital circuits are presented throughout the book. While these examples help illustrate the fea-
tures of an HDL, they also demonstrate the best practices used by industry to exploit HDLs.
Ignorance of these practices will lead to cute, but worthless. HDL models that may simulate a
phenomenon, but that cannot be synthesized by design tools, or to models that waste silicon
area or synthesize to hardware that cannot operate correctly.

As previously stated, digital systems manipulate discrete quantities of information that are
represented in binary form. Operands used for calculations may be expressed in the binary
number system. Other discrete elements, including the decimal digits, are represented in binary
codes. Digital circuits, also referred to as logic circuits, process data by means of binary logic
elements (logic gates) using binary signals. Quantities are stored in binary (two-valued) stor-
age elements (flip-flops). The purpose of this chapter is to introduce the various binary con-
cepts as a frame of reference for further study in the succeeding chapters.

1.2 BINARY NUMBERS

A decimal number such as 7.392 represents a quantity equal to 7 thousands, plus 3 hundreds,
plus 9 tens, plus 2 units. The thousands. hundreds, etc., are powers of 10 implied by the posi-
tion of the coefficients in the number. To be more exact, 7,392 is a shorthand notation for what
should be written as

Tx 100 +3 %100 +9x 10" +2x 10°

However. the convention is to write only the coefficients and, from their position. deduce the
necessary powers of 10. In general, a number with a decimal point is represented by a series
of coefficients:

asagazaxaag-a—jaa_3

The coefficients a; are any of the 10 digits (0, 1, 2,9). and the subscript value j gives the
place value and, hence, the power of 10 by which the coefficient must be multiplied. Thus, the
preceding decimal number can be expressed as

10%as + 10%y + 10%a; + 10%; + 10'a; + 10% + 10 a_; + 1072, + 10 %4,

The decimal number system is said to be of base, or radix, 10 because it uses 10 digits and
the coefficients are multiplied by powers of 10. The binary system is a different number sys-
tem. The coefficients of the binary number system have only two possible values: 0 and 1.
Each coefficient a; is multiplied by 2/, and the results are added to obtain the decimal equiv-
alent of the number. The radix point (e.g., the decimal point when 10 is the radix) distinguishes
positive powers of 10 from negative powers of 10. For example, the decimal equivalent of the

&

Chapter 1 Digital Systems and Binary Numbers

binary number 11010.11 is 26.75, as shown from the multiplication of the coefficients by pow-
ers of 2:

IX2+1X2+0x2+1Xx2'+0x2°+1%x27" +1%x22=2675

In general, a number expressed in a base-r system has coefficients multiplied by powers of r:

- 2 -
ap r" + agy "M+ - tagert v apcr+ag+aqycr!

Yan r 4 o ta,r™

The coefficients a; range in value from 0 to » — 1. To distinguish between numbers of differ-
ent bases, we enclose the coefficients in parentheses and write a subscript equal to the base used
(except sometimes for decimal numbers, where the content makes it obvious that the base is
decimal). An example of a base-5 number is

(40212)s =4 X5+ 00X 52 +2%x5" +1x5%+2x57"=(5114),

The coefficient values for base 5 can be only 0, 1, 2, 3, and 4. The octal number system is a
base-8 system that has eight digits: 0, 1, 2, 3, 4, 5, 6, 7. An example of an octal number is
127.4. To determine its equivalent decimal value, we expand the number in a power series with
a base of 8:

(1274) =1 X 8 +2x 8 + 7 x 8 + 4 x 871 = (87.5)9

Note that the digits 8 and 9 cannot appear in an octal number.

It is customary to borrow the needed r digits for the coefficients from the decimal system
when the base of the number is less than 10. The letters of the alphabet are used to supplement
the 10 decimal digits when the base of the number is greater than 10. For example, in the
hexadecimal (base-16) number system, the first 10 digits are borrowed from the decimal sys-
tem. The letters A, B, C, D, E, and F are used for the digits 10, 11, 12, 13, 14, and 15, respec-
tively. An example of a hexadecimal number is

(B65F)16 = 11 X 16 + 6 X 167 + 5 X 16' + 15 X 16° = (46,687)9

As noted before, the digits in a binary number are called bits. When a bit is equal to 0, it does
not contribute to the sum during the conversion. Therefore, the conversion from binary to dec-
imal can be obtained by adding only the numbers with powers of two corresponding to the bits
that are equal to 1. For example,

(110101), = 32 + 16 + 4 + 1 = (53);9

There are four 1’s in the binary number. The corresponding decimal number is the sum of
the four powers of two. The first 24 numbers obtained from 2 to the power of n are listed in
Table 1.1. In computer work, 2'? is referred to as K (kilo), 2°” as M (mega), 20 as G (giga),
and 2% as T (tera). Thus, 4K = 2! = 4,096 and 16M = 2%* = 16,777,216. Computer ca-
pacity is usually given in bytes. A byte is equal to eight bits and can accommodate (i.e., repre-
sent the code of) one keyboard character. A computer hard disk with four gigabytes of storage
has a capacity of 4G = 2*? bytes (approximately 4 billion bytes).

Section 1.3 Number-Base Conversions 5

Table 1.1

Powers of Two
n 2N n 2r n 2
0 1 8 256 16 65,536
1 2 9 512 17 131,072
2 4 10 1.024 18 262,144
3 8 11 2,048 19 524,288
4 16 12 4.096 20 1,048,576
5 2 13 8,192 21 2,097,152
6 64 14 16,384 22 4,194,304
7 128 15 32,768 23 8,388,608

Arithmetic operations with numbers in base r follow the same rules as for decimal num-
bers. When a base other than the familiar base 10 is used, one must be careful to use only the
r-allowable digits. Examples of addition, subtraction, and multiplication of two binary num-
bers are as follows:

augend: 101101 minuend: 101101 multiplicand: 1011
addend: +100111 subtrahend: —100111 multiplier: X 101
sum: 1010100 difference: 000110 1011
0000

1011

product: 110111

The sum of two binary numbers is calculated by the same rules as in decimal, except that
the digits of the sum in any significant position can be only 0 or 1. Any carry obtained in a given
significant position is used by the pair of digits one significant position higher. Subtraction is
slightly more complicated. The rules are still the same as in decimal, except that the borrow in
a given significant position adds 2 to a minuend digit. (A borrow in the decimal system adds
10 to a minuend digit.) Multiplication is simple: The multiplier digits are always 1 or 0; there-
fore. the partial products are equal either to the multiplicand or to (.

1.3 NUMBER-BASE CONVERSIONS

The conversion of a number in base r to decimal is done by expanding the number in a power
series and adding all the terms as shown previously. We now present a general procedure for
the reverse operation of converting a decimal number to a number in base 7. If the number in-
cludes a radix point, it is necessary to separate the number into an integer part and a fraction
part, since each part must be converted differently. The conversion of a decimal integer to a num-
ber in base r is done by dividing the number and all successive quotients by r and accumulat-
ing the remainders. This procedure is best illustrated by example.

6 Chapter 1 Digital Systems and Binary Numbers

EXAMPLE 1.1

Convert decimal 41 to binary. First, 41 is divided by 2 to give an integer quotient of 20 and a
remainder of % Then the quotient is again divided by 2 to give a new quotient and remainder.
The process is continued until the integer quotient becomes 0. The coefficients of the desired
binary number are obtained from the remainders as follows:

Integer

Quotient Remainder Coefficient
412 = 20 + : gg= 1
2012 = 10 + 0 a; =0
102 = 5 i1 0 a, =0
§h o= 2 I ! a3 = 1
2/2 = | on 0 as =10
12 = 0 + ! as=1

Therefore, the answer is (41)19 = (asasazaayag); = (101001),.
The arithmetic process can be manipulated more conveniently as follows:

Integer Remainder

41

20 1

10 0

5 0

2 1

1 0

0 1 101001 = answer

Conversion from decimal integers to any base-r system is similar to this example, except that
division is done by r instead of 2.

EXAMPLE 1.2)

Convert decimal 153 to octal. The required base r is 8. First, 153 is divided by 8 to give an in-
teger quotient of 19 and a remainder of 1. Then 19 is divided by 8 to give an integer quotient
of 2 and a remainder of 3. Finally, 2 is divided by 8 to give a quotient of 0 and a remainder of
2. This process can be conveniently manipulated as follows:

153
19

Section 1.3 Number-Base Conversions 7

The conversion of a decimal fraction to binary is accomplished by a method similar to that
used for integers. However, multiplication is used instead of division. and integers instead of
remainders are accumulated. Again, the method is best explained by example.

EXAMPLE 1.3

Convert (0.6875) to binary. First, 0.6875 is multiplied by 2 to give an integer and a fraction.
Then the new fraction is multiplied by 2 to give a new integer and a new fraction. The process
is continued until the fraction becomes 0 or until the number of digits have sufficient accuracy.
The coefficients of the binary number are obtained from the integers as follows:

0.6875 X 2
0.3750 X 2
0.7500 x 2
0.5000 x 2

Integer Fraction
I + 0.3750
0 + 0.7500
1 + 0.5000
1 + 0.0000

Coefficient
a.p = 1
ay =10
a3 =1
d-g =1

Therefore, the answer is (0.6875),9 = (Qa—ja—sa—3a_4)> = (0.1011),.

To convert a decimal fraction to a number expressed in base r, a similar procedure is used.
However, multiplication is by r instead of 2, and the coefficients found from the integers may
range in value from O to » — | instead of O and 1.

EXAMPLE 1.4

Convert (0.513); to octal.

0513 X 8 = 4,104
0.104 x 8 = 0.832
0.832 X 8 = 6.656
0.656 X 8 = 5.248
0.248 X 8§ = 1.984

0.984 X 8 = 7.872

The answer, to seven significant figures, is obtained from the integer part of the products:

(0.513)10 = (0.406517...)g

8 Chapter 1 Digital Systems and Binary Numbers

The conversion of decimal numbers with both integer and fraction parts is done by con-
verting the integer and the fraction separately and then combining the two answers. Using the
results of Examples 1.1 and 1.3, we obtain

(41.6875)1p = (101001.1011),
From Examples 1.2 and 1.4, we have
(153.513)1p = (231.406517)g

1.4 OCTAL AND HEXADECIMAL NUMBERS 7

The conversion from and to binary, octal, and hexadecimal plays an important role in digital
computers. Since 2° = 8 and 2* = 16, each octal digit corresponds to three binary digits and
each hexadecimal digit corresponds to four binary digits. The first 16 numbers in the decimal,
binary, octal, and hexadecimal number systems are listed in Table 1.2.

The conversion from binary to octal is easily accomplished by partitioning the binary num-
ber into groups of three digits each, starting from the binary point and proceeding to the left
and to the right. The corresponding octal digit is then assigned to each group. The following
example illustrates the procedure:

(10 110 001 101 o011 « 111 100 000 110), = (26153.7406)g
2 6 1 5 3 7 4 0 6
Table 1.2
Numbers with Different Bases
Decimal Binary Octal Hexadecimal
(base 10) (base 2) (base 8) (base 16)
00 0000 00 0
01 0001 01 1
02 0010 02 2
03 0011 03 3
04 0100 04 4
05 0101 05 5
06 0110 06 6
07 0111 07 7
08 1000 10 8
09 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 &
13 1101 15 D
14 1110 16 E
15 1111 17 F

Section 1.5 Complements 9

Conversion from binary to hexadecimal is similar, except that the binary number is divided into
groups of four digits:

(10 1100 0110 1011+ 1111 0010}, = (2C6B.F2),4
2. © 6 B F 2

The corresponding hexadecimal (or octal) digit for each group of binary digits is easily re-
membered from the values listed in Table 1.2.

Conversion from octal or hexadecimal to binary is done by reversing the preceding proce-
dure. Each octal digit is converted to its three-digit binary equivalent. Similarly, each hexa-
decimal digit is converted to its four-digit binary equivalent. The procedure is illustrated in
the following examples:

(673.124) = (110 111 011+ 001 010 100)
6 7 3 12 4

and
(306.D)15 = (0011 0000 0110 - 1101),
3 0 6 D

Binary numbers are difficult to work with because they require three or four times as many
digits as their decimal equivalents. For example, the binary number 111111111111 is equivalent
to decimal 4095. However, digital computers use binary numbers, and it is somelimes necessary
for the human operator or user to communicate directly with the machine by means of such num-
bers. One scheme that retains the binary system in the computer. but reduces the number of dig-
its the human must consider, utilizes the relationship between the binary number system and the
octal or hexadecimal system. By this method. the human thinks in terms of octal or hexadecimal
numbers and performs the required conversion by inspection when direct communication with
the machine is necessary. Thus. the binary number ILILITTTT111 has 12 digits and is expressed
in octal as 7777 (4 digits) or in hexadecimal as FFF (3 digits). During communication between
people (about binary numbers in the computer), the octal or hexadecimal representation is more
desirable because it can be expressed more compactly with a third or a quarter of the number of
digits required for the equivalent binary number. Thus, most computer manuals use either octal
or hexadecimal numbers to specify binary quantities. The choice between them is arbitrary,
although hexadecimal tends to win out, since it can represent a byte with two digits.

1.5 COMPLEMENTS

Complements are used in digital computers to simplify the subtraction operation and for log-
ical manipulation. Simplifying operations leads to simpler, less expensive circuits to implement
the operations. There are two types of complements for each base-r system: the radix com-
plement and the diminished radix complement. The first is referred to as the r’s complement
and the second as the (r — 1) s complement. When the value of the base r is substituted in the
name, the two types are referred 1o as the 2's complement and 1's complement for binary num-
bers and the 10’s complement and 9's complement for decimal numbers.

10

Chapter 1 Digital Systems and Binary Numbers

Diminished Radix Complement

Given a number N in base r having n digits, the (r — 1)’s complement of N is defined as
(#" = 1) — N. For decimal numbers, r = 10and r — 1 = 9, so the 9’s complement of N is
(10" — 1) — N. In this case, 10" represents a number that consists of a single 1 followed by
n0’s. 10" — 1 is a number represented by n 9’s. For example, if n = 4, we have 10* = 10,000
and 10* — 1 = 9999. It follows that the 9’s complement of a decimal number is obtained by
subtracting each digit from 9. Here are some numerical examples:

The 9°s complement of 546700 is 999999 — 546700 = 453299.
The 9°s complement of 012398 is 999999 — 012398 = 987601.

For binary numbers, » = 2 andr — 1 = 1, so the 1's complement of Nis (2" — 1) — N.
Again, 2" is represented by a binary number that consists of a 1 followed by n 0’s. 2" — 11is
a binary number represented by n 1's. For example, if n = 4, we have = (10000), and
2% — 1 = (1111),. Thus, the 1’s complement of a binary number is obtained by subtracting
each digit from 1. However, when subtracting binary digits from 1, we can have either
1 —0=1or1— 1= 0, which causes the bit to change from O to 1 or from 1 to 0, respec-
tively. Therefore, the 1°s complement of a binary number is formed by changing 1’s to 0°s and
0’s to 1's. The following are some numerical examples:

The 1’s complement of 1011000 is 0100111,
The 1’s complement of 0101101 is 1010010.

The (r — 1)’s complement of octal or hexadecimal numbers is obtained by subtracting
each digit from 7 or F (decimal 15), respectively.

Radix Complement

The 7’s complement of an n-digit number N in base r is defined as 7" — N for N # 0 and as
0 for N = 0. Comparing with the (r — 1)’s complement, we note that the r’s complement is
obtained by adding 1 to the (r — 1)’s complement, since 7" — N = [(r" — 1) — N] + L.
Thus, the 10’s complement of decimal 2389 is 7610 + 1 = 7611 and is obtained by adding 1
to the 9’s-complement value. The 2’s complement of binary 101100 is 010011 + 1 = 010100
and is obtained by adding 1 to the 1’s-complement value.

Since 10 is a number represented by a 1 followed by n 0's, 10" — N, which is the 10’s com-
plement of N, can be formed also by leaving all least significant 0’s unchanged, subtracting
the first nonzero least significant digit from 10, and subtracting all higher significant digits
from 9. Thus,

the 10’s complement of 012398 is 987602

and
the 10’s complement of 246700 is 753300

Section 1.5 Complements n

The 10's complement of the first number is obtained by subtracting 8 from 10 in the least sig-
nificant position and subtracting all other digits from 9. The 10’s complement of the second
number is obtained by leaving the two least significant 0's unchanged. subtracting 7 from 10,
and subtracting the other three digits from 9.

Similarly, the 2's complement can be formed by leaving all least significant 0’s and the first
| unchanged and replacing 1°s with 0’s and 0's with 1s in all other higher significant digits.
For example,

the 2's complement of 1101100 is 0010100
and

the 2's complement of 0110111 is 1001001

The 2°s complement of the first number is obtained by leaving the two least significant 0's and
the first 1 unchanged and then replacing 1's with 0’s and 0's with 1's in the other four most sig-
nificant digits. The 2's complement of the second number is obtained by leaving the least sig-
nificant 1 unchanged and complementing all other digits.

In the previous definitions, it was assumed that the numbers did not have a radix point. If
the original number N contains a radix point, the point should be removed temporarily in order
to form the s or (r — 1)'s complement. The radix point is then restored to the complement-
ed number in the same relative position, It is also worth mentioning that the complement of the
complement restores the number to its original value. To see this relationship, note that the r's
complement of N is r” — N, so that the complement of the complement is
r'" = (r" = N) = N and is equal to the original number.

Subtraction with Complements

The direct method of subtraction taught in elementary schools uses the borrow concept. In this
method, we borrow a | from a higher significant position when the minuend digit is smaller
than the subtrahend digit. The method works well when people perform subtraction with paper
and pencil. However, when subtraction is implemented with digital hardware, the method is less
efficient than the method that uses complements.

The subtraction of two n-digit unsigned numbers M — N in base r can be done as follows:

1. Add the minuend M 10 the r’s complement of the subtrahend N. Mathematically,
M+ (M"—-N)y=M-N+r

2, If M = N, the sum will produce an end carry ", which can be discarded; what is left is
the result M — N,

3. If M < N, the sum does not produce an end carry and is equal to 7" — (N — M),
which is the r's complement of (N — M). To obtain the answer in a familiar form, take
the r’s complement of the sum and place a negative sign in front,

12 Chapter 1 Digital Systems and Binary Numbers

The following examples illustrate the procedure:

EXAMPLE 1.5

Using 10’s complement, subtract 72532 — 3250,

M= 72532
10’s complement of N = + 96750
Sum = 169282

Discard end carry 10° = —100000
Answer = 69282

Note that M has five digits and N has only four digits. Both numbers must have the same num-
ber of digits, so we write N as 03250. Taking the 10’s complement of N produces a 9 in the most
significant position. The occurrence of the end carry signifies that M = N and that the result
is therefore positive.

EXAMPLE 1.6

Using 10’s complement, subtract 3250 — 72532,

M = 03250
10’s complement of N = +27468
Sum = 30718

There is no end carry. Therefore, the answer is —(10’s complement of 30718) = —69282.

Note that since 3250 < 72532, the result is negative. Because we are dealing with unsigned
numbers, there is really no way to get an unsigned result for this case. When subtracting with
complements, we recognize the negative answer from the absence of the end carry and the
complemented result. When working with paper and pencil, we can change the answer to a
signed negative number in order to put it in a familiar form.

Subtraction with complements is done with binary numbers in a similar manner, using the
procedure outlined previously.

EXAMPLE 1.7

Given the two binary numbers X = 1010100 and ¥ = 1000011, perform the subtraction
(a) X — Yand (b)Y — X by using 2’s complements.

Section 1.5 Complements 13

(a) X = 1010100
2's complement of ¥ = + 0111101
Sum = 10010001

Discard end carry 27 = — 10000000

Answer: X — ¥ = 0010001
(b) Y = 1000011
2’s complement of X = + 0101100
Sum = 1101111
There is no end carry. Therefore, the answeris ¥ — X = —(2's complement of 1101111) =
—0010001.

Subtraction of unsigned numbers can aiso be done by means of the (r — 1)'s complement.
Remember that the (# — 1)'s complement is one less than the r's complement. Because of
this, the result of adding the minuend to the complement of the subtrahend produces a sum that
is one less than the correct difference when an end carry occurs. Removing the end carry and
adding 1 to the sum is referred (o as an end-around carry.

EXAMPLE 1.8

Repeat Example 1.7, but this time using 1's complement.

(@) X — ¥ = 1010100 — 1000011

X = 1010100

I's complement of ¥ = + 0111100
Sum = 10010000

End-around carry = + 1
Answer: X — Y = 0010001

(b) ¥ — X = 1000011 — 1010100
Y = 1000011
s comPIemenl of X = + 0101011

Sum = 1101110

There is no end carry. Therefore, the answer is ¥ — X = —(1's complement of 1101110) =

—0010001.
]

Note that the negative result is obtained by taking the 1's complement of the sum, since this is
the type of complement used. The procedure with end-around carry is also applicable to sub-
tracting unsigned decimal numbers with 9°s complement.

14

1.6

Chapter 1 Digital Systems and Binary Numbers

SIGNED BINARY NUMBERS

Positive integers (including zero) can be represented as unsigned numbers. However, to rep-
resent negative integers, we need a notation for negative values. In ordinary arithmetic, a neg-
ative number is indicated by a minus sign and a positive number by a plus sign. Because of
hardware limitations, computers must represent everything with binary digits. It is customary
to represent the sign with a bit placed in the leftmost position of the number. The convention
is to make the sign bit O for positive and 1 for negative.

It is important to realize that both signed and unsigned binary numbers consist of a string
of bits when represented in a computer. The user determines whether the number is signed or
unsigned. If the binary number is signed, then the leftmost bit represents the sign and the rest
of the bits represent the number. If the binary number is assumed to be unsigned, then the left-
most bit is the most significant bit of the number. For example, the string of bits 01001 can be
considered as 9 (unsigned binary) or as +9 (signed binary) because the leftmost bit is 0. The
string of bits 11001 represents the binary equivalent of 25 when considered as an unsigned
number and the binary equivalent of —9 when considered as a signed number. This is because
the 1 that is in the leftmost position designates a negative and the other four bits represent bi-
nary 9. Usually, there is no confusion in identifying the bits if the type of representation for the
number is known in advance.

The representation of the signed numbers in the last example is referred to as the signed-
magnitude convention. In this notation, the number consists of a magnitude and a symbol (+
or —) or a bit (0 or 1) indicating the sign. This is the representation of signed numbers used in
ordinary arithmetic. When arithmetic operations are implemented in a computer, it is more
convenient to use a different system, referred to as the signed-complement system, for repre-
senting negative numbers. In this system, a negative number is indicated by its complement.
Whereas the signed-magnitude system negates a number by changing its sign, the signed-com-
plement system negates a number by taking its complement. Since positive numbers always start
with 0 (plus) in the leftmost position, the complement will always start with a 1, indicating a
negative number. The signed-complement system can use either the 1’s or the 2°s complement,
but the 2’s complement is the most common.

As an example, consider the number 9, represented in binary with eight bits. +9 is repre-
sented with a sign bit of 0 in the leftmost position, followed by the binary equivalent of 9,
which gives 00001001. Note that all eight bits must have a value; therefore, 0’s are inserted fol-
lowing the sign bit up to the first 1. Although there is only one way to represent +9, there are
three different ways to represent —9 with eight bits:

signed-magnitude representation: 10001001
signed-1’s-complement representation: 11110110
signed-2’s-complement representation: 11110111

In signed-magnitude, —9 is obtained from +9 by changing the sign bit in the leftmost position
from O to 1. In signed-1's complement, —9 is obtained by complementing all the bits of +9,
including the sign bit. The signed-2's-complement representation of —9 is obtained by taking
the 2's complement of the positive number, including the sign bit.

Section 1.6 Signed Binary Numbers 15

Table 1.3
Signed Binary Numbers
Signed-2's Signed-1's Signed
Decimal Complement Complement Magnitude

+7 0111 0111 (10 8]
+6 0110 0110 0110
+5 0101 0101 0101
+4 0100 0100 0100
+3 0011 0011 0011
+2 0010 0010 0010
1 0001 0001 0001
+0 0000 0000 0000
-0 — L1111 1000
= 1111 1110 1001
-2 1110 1101 1010
-3 1101 1100 1011
-4 1100 1011 1100
-5 1011 1010 1101
=6 1010 1001 1110
=T 1001 1000 1111
-8 1000 — —

Table 1.3 lists all possible four-bit signed binary numbers in the three representations.
The equivalent decimal number is also shown for reference. Note that the positive numbers
in all three representations are identical and have 0 in the leftmost position. The signed-2’s-
complement system has only one representation for 0. which is always positive. The other
two systems have either a positive 0 or a negative 0, something not encountered in ordinary
arithmetic. Note that all negative numbers have a | in the leftmost bit position: that is the
way we distinguish them from the positive numbers. With four bits, we can represent 16 binary
numbers. In the signed-magnitude and the 1’s-complement representations, there are eight
positive numbers and eight negative numbers, including two zeros. In the 2's-complement
representation, there are eight positive numbers. including one zero, and eight negative
numbers.

The signed-magnitude system is used in ordinary arithmetic, but is awkward when em-
ployed in computer arithmetic because of the separate handling of the sign and the magnitude,
Therefore, the signed-complement system is normally used. The 1’s complement imposes some
difficulties and is seldom used for arithmetic operations. It is useful as a logical operation,
since the change of 1 to 0 or 0 to 1 is equivalent to a logical complement operation, as will be
shown in the next chapter. The discussion of signed binary arithmetic that follows deals ex-
clusively with the signed-2's-complement representation of negative numbers, The same pro-
cedures can be applied to the signed-1"s-complement system by including the end-around carry
as is done with unsigned numbers.

16 Chapter 1 Digital Systems and Binary Numbers

Arithmetic Addition

The addition of two numbers in the signed-magnitude system follows the rules of ordinary arith-
metic. If the signs are the same, we add the two magnitudes and give the sum the common sign.
If the signs are different, we subtract the smaller magnitude from the larger and give the differ-
ence the sign of the larger magnitude. For example, (+25) + (—37) = —(37 — 25) = —12
and is done by subtracting the smaller magnitude, 25, from the larger magnitude, 37, and
appending the sign of 37 to the result. This is a process that requires a comparison of the
signs and magnitudes and then performing either addition or subtraction. The same procedure
applies to binary numbers in signed-magnitude representation. In contrast, the rule for
adding numbers in the signed-complement system does not require a comparison or sub-
traction, but only addition. The procedure is very simple and can be stated as follows for
binary numbers:

The addition of two signed binary numbers with negative numbers represented in signed-
2’s-complement form is obtained from the addition of the two numbers, including their sign bits.
A carry out of the sign-bit position is discarded.

Numerical examples for addition follow:

+ 6 00000110 - 6 11111010
+13 00001101 +13 00001101
+19 00010011 + 7 00000111
+ 6 00000110 — 6 11111010
—13 11110011 —13 11110011
— 7 11111001 —19 11101101

Note that negative numbers must be initially in 2’s-complement form and that if the sum ob-
tained after the addition is negative, it is in 2’s-complement form.

In each of the four cases, the operation performed is addition with the sign bit included.
Any carry out of the sign-bit position is discarded, and negative results are automatically in 2’s-
complement form.

In order to obtain a correct answer, we must ensure that the result has a sufficient number
of bits to accommodate the sum. If we start with two n-bit numbers and the sum occupies
n + 1 bits, we say that an overflow occurs. When one performs the addition with paper and
pencil, an overflow is not a problem, because we are not limited by the width of the page. We
just add another O to a positive number or another | to a negative number in the most signifi-
cant position to extend the number to n + 1 bits and then perform the addition. Overflow is a
problem in computers because the number of bits that hold a number is finite, and a result that
exceeds the finite value by 1 cannot be accommodated.

The complement form of representing negative numbers is unfamiliar to those used to the
signed-magnitude system. To determine the value of a negative number in signed-2’s comple-
ment, it is necessary to convert the number to a positive number to place it in a more familiar
form. For example, the signed binary number 11111001 is negative because the leftmost bit is
1. Its 2’s complement is 00000111, which is the binary equivalent of +7. We therefore recog-
nize the original negative number to be equal to —7.

Section 1.7 Binary Codes 17

Arithmetic Subtraction

Subtraction of two signed binary numbers when negative numbers are in 2's-complement form
is simple and can be stated as follows:

Take the 2's complement of the subtrahend (including the sign bit) and add it to the minuend
(including the sign bit). A carry out of the sign-bit position is discarded.

This procedure is adopted because a subtraction operation can be changed to an addition
operation if the sign of the subtrahend is changed. as is demonstrated by the following
relationship:

(xA) — (+8) = (£A) + (-B):
(£A) = (=B) = (xA) + (+B).

But changing a positive number to a negative number is easily done by taking the 2's comple-
ment of the positive number. The reverse is also true, because the complement of a negative num-
ber in complement form produces the equivalent positive number. To see this, consider the
subtraction (—6) — (—13) = +7. In binary with eight bits, this operation is written as
(11111010 = 11110011). The subtraction is changed to addition by taking the 2’s complement
of the subtrahend (—13), giving (+13). In binary, thisis 11111010 + 00001101 = 100000111,
Removing the end carry, we obtain the correct answer: 00000111 (+7).

It is worth noting that binary numbers in the signed-complement system are added and sub-
tracted by the same basic addition and subtraction rules as unsigned numbers. Therefore, com-
puters need only one common hardware circuit to handle both types of arithmetic. The user or
programmer must interpret the results of such addition or subtraction differently, depending on
whether it is assumed that the numbers are signed or unsigned.

1.7 BINARY CODES

Digital systems use signals that have two distinct values and circuit elements that have two sta-
ble states. There is a direct analogy among binary signals, binary circuit elements, and binary
digits. A binary number of # digits, for example, may be represented by » binary circuit ele-
ments, each having an output signal equivalent to O or 1. Digital systems represent and ma-
nipulate not only binary numbers, but also many other discrete elements of information. Any
discrete element of information that is distinct among a group of quantities can be represented
with a binary code (i.e., a pattern of 0's and 17s). The codes must be in binary because, in
today's technology, only circuits that represent and manipulate patterns of 0's and 1's can be
manufactured economically for use in computers. However, it must be realized that binary
codes merely change the symbols, not the meaning of the elements of information that they rep-
resent. If we inspect the bits of a computer at random, we will find that most of the time they
represent some type of coded information rather than binary numbers.

An n-bit binary code is a group of n bits that assumes up to 2" distinct combinations of 1's
and O's, with each combination representing one element of the set that is being coded. A set
of four elements can be coded with two bits, with each element assigned one of the following
bit combinations: 00, 01, 10. 11. A set of eight elements requires a three-bit code and a set of

18 Chapter 1 Digital Systems and Binary Numbers

BCD Code

16 elements requires a four-bit code. The bit combination of an n-bit code is determined from
the count in binary from 0 to 2" — 1. Each element must be assigned a unique binary bit com-
bination, and no two elements can have the same value; otherwise, the code assignment will
be ambiguous.

Although the minimum number of bits required to code 2" distinct quantities is n, there is
no maximum number of bits that may be used for a binary code. For example, the 10 decimal
digits can be coded with 10 bits, and each decimal digit can be assigned a bit combination of
nine 0’s and a 1. In this particular binary code, the digit 6 is assigned the bit combination
0001000000. '

Although the binary number system is the most natural system for a computer, most people are
more accustomed to the decimal system. One way to resolve this difference is to convert dec-
imal numbers to binary, perform all arithmetic calculations in binary, and then convert the bi-
nary results back to decimal. This method requires that we store decimal numbers in the
computer so that they can be converted to binary. Since the computer can accept only binary
values, we must represent the decimal digits by means of a code that contains 1°s and 0’s. It is
also possible to perform the arithmetic operations directly on decimal numbers when they are
stored in the computer in coded form.

A binary code will have some unassigned bit combinations if the number of elements in the
set is not a multiple power of 2. The 10 decimal digits form such a set. A binary code that dis-
tinguishes among 10 elements must contain at least four bits, but 6 out of the 16 possible com-
binations remain unassigned. Different binary codes can be obtained by arranging four bits
into 10 distinct combinations, The code most commonly used for the decimal digits is the
straight binary assignment listed in Table 1.4. This scheme is called binary-coded decimal and
is commonly referred to as BCD. Other decimal codes are possible and a few of them are pre-
sented later in this section.

Table 1.4
Binary-Coded Decimal (BCD)

Decimal BCD
Symbol Digit

(=1

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

D oo -1 Oh WD =

Section 1.7 Binary Codes 19

Table 1.4 gives the four-bit code for one decimal digit. A number with k decimal digits will
require 44 bits in BCD. Decimal 396 is represented in BCD with 12 bits as 0011 1001 0110,
with each group of 4 bits representing one decimal digit. A decimal number in BCD is the
same as its equivalent binary number only when the number is between 0 and 9. A BCD num-
ber greater than 10 looks different from its equivalent binary number. even though both con-
tain 1's and O's, Moreover, the binary combinations 1010 through 1111 are not used and have
no meaning in BCD. Consider decimal 185 and its corresponding value in BCD and binary:

(185);5 = (0001 1000 0101)gepy = (10111001)5

The BCD value has 12 bits to encode the characters of the decimal value, but the equivalent
binary number needs only 8 bits. It is obvious that the representation of a BCD number needs
more bits than its equivalent binary value, However, there is an advantage in the use of deci-
mal numbers, because computer input and output data are generated by people who use the dec-
imal system.

It is important to realize that BCD numbers are decimal numbers and not binary numbers,
although they use bits in their representation. The only difference between a decimal number
and BCD is that decimals are written with the symbols 0, 1, 2, ..., 9 and BCD numbers use
the binary code 0000, 0001. 0010, 1001. The decimal value is exactly the same. Decimal
10 is represented in BCD with eight bits as 0001 0000 and decimal 15 as 0001 0101. The cor-
responding binary values are 1010 and 1111 and have only four bits.

BCD Addition

Consider the addition of two decimal digits in BCD, together with a possible carry from a pre-
vious less significant pair of digits. Since each digit does not exceed 9, the sum cannot be
greaterthan 9 + 9 + | = 19, with the | being a previous carry. Suppose we add the BCD dig-
its as if they were binary numbers. Then the binary sum will produce a result in the range
from 0 10 19. In binary, this range will be from 0000 to 10011, but in BCD. it is from 0000 to
1 1001, with the first (i.e., leftmost) 1 being a carry and the next four bits being the BCD sum.
When the binary sum is equal to or less than 1001 (without a carry), the corresponding BCD
digit is correct. However, when the binary sum is greater than or equal to 1010, the result is an
invalid BCD digit. The addition of 6 = (0110)5 to the binary sum converts it to the correct digit
and also produces a carry as required. This is because a carry in the most significant bit posi-
tion of the binary sum and a decimal carry differ by 16 — 10 = 6. Consider the following

three BCD additions:
4 0100 4 0100 8 1000
+5 +0101 +8 +1000 +9 1001

9 1001 12 1100 17 10001

+0110 +0110
10010 10111

In each case, the two BCD digits are added as if they were two binary numbers. If the binary
sum is greater than or equal to 1010, we add 0110 to obtain the correct BCD sum and a carry.
In the first example, the sum is equal to 9 and is the correct BCD sum. In the second example,

20

Chapter 1 Digital Systems and Binary Numbers

the binary sum produces an invalid BCD digit. The addition of 0110 produces the correct BCD
sum, 0010 (i.e., the number 2), and a carry. In the third example, the binary sum produces a carry.
This condition occurs when the sum is greater than or equal to 16. Although the other four bits
are less than 1001, the binary sum requires a correction because of the carry. Adding 0110, we
obtain the required BCD sum 0111 (i.e., the number 7) and a BCD carry.

The addition of two n-digit unsigned BCD numbers follows the same procedure. Consider
the addition of 184 + 576 = 760 in BCD:

BCD 1 1
0001 1000 0100 184
+0101 0111 0110 +576
Binary sum 0111 10000 1010
Add 6 0110 0110
BCD sum 0111 0110 0000 760
The first, least significant pair of BCD digits produces a BCD digit sum of 0000 and a carry
for the next pair of digits. The second pair of BCD digits plus a previous carry produces a digit

sum of 0110 and a carry for the next pair of digits. The third pair of digits plus a carry produces
a binary sum of 0111 and does not require a correction.

Decimal Arithmetic

The representation of signed decimal numbers in BCD is similar to the representation of signed
numbers in binary. We can use either the familiar signed-magnitude system or the signed-com-
plement system. The sign of a decimal number is usually represented with four bits to conform
to the four-bit code of the decimal digits. It is customary to designate a plus with four 0’s and
a minus with the BCD equivalent of 9, which is 1001.

The signed-magnitude system is seldom used in computers. The signed-complement system
can be either the 9's or the 10’s complement, but the 10’s complement is the one most often
used. To obtain the 10’s complement of a BCD number, we first take the 9's complement and
then add 1 to the least significant digit. The 9’s complement is calculated from the subtraction
of each digit from 9.

The procedures developed for the signed-2’s-complement system in the previous section
also apply to the signed-10’s-complement system for decimal numbers. Addition is done by
summing all digits, including the sign digit, and discarding the end carry. This operation
assumes that all negative numbers are in 10’s-complement form. Consider the addition
(+375) + (—240) = +135, done in the signed-complement system:

0 375
+9 760
0 135

The 9 in the leftmost position of the second number represents a minus, and 9760 is the 10’s
complement of 0240. The two numbers are added and the end carry is discarded to obtain
+135. Of course, the decimal numbers inside the computer, including the sign digits, must be
in BCD. The addition is done with BCD digits as described previously.

Section 1.7 Binary Codes 21

The subtraction of decimal numbers, either unsigned or in the signed-10’s-complement
system, is the same as in the binary case: Take the 10's complement of the subtrahend and add
it to the minuend. Many computers have special hardware to perform arithmetic calculations
directly with decimal numbers in BCD. The user of the computer can specify programmed
instructions to perform the arithmetic operation with decimal numbers directly, without having
to convert them to binary.

Other Decimal Codes

Binary codes for decimal digits require a minimum of four bits per digit. Many different codes
can be formulated by arranging four bits into 10 distinct combinations. BCD and three other
representative codes are shown in Table 1.5. Each code uses only 10 out of a possible 16 bit
combinations that can be arranged with four bits. The other six unused combinations have no
meaning and should be avoided.

BCD and the 2421 code are examples of weighted codes. In a weighted code, each bit position
is assigned a weighting factor in such a way that each digit can be evaluated by adding the weights
of all the I's in the coded combination. The BCD code has weights of 8, 4, 2. and 1. which corre-
spond to the power-of-two values of each bit. The bit assignment 0110, for example, is interpreted
by the weights to represent decimal 6 because 8 X 0 + 4 X | + 2 X | + | X 0 = 6. The bit
combination 1101, when weighted by the respective digits 2421, gives the decimal equivalent of
2X 1 +4X1+2xX0+1X1 =7 Note that some digits can be coded in two possible
ways in the 2421 code. For instance. decimal 4 can be assigned to bit combination 0100 or 1010,
since both combinations add up to a total weight of 4.

Table 1.5
Four Different Binary Codes for the Decimal Digits

Decimal BCD :
Digit 8421 2421 Excess-3 8, 4 -2 -1

0 0000 0000 0011 0000

1 0001 0001 0100 0111

2 0010 0010 0101 0110

3 0011 0011 0110 0101

4 0100 0100 0111 0100

k 0101 1011 1000 1011

6 0110 1100 1001 1010

1 0111 1101 1010 1001

8 1000 1110 1011 1000

9 1001 1111 1100 1111
1010 0101 0000 0001

Unused 1011 0110 0001 0010
bit 1100 o111 0010 0011
combi- 1101 1000 1101 1100
nations 1110 1001 1110 1101

111 1010 11 110

22 Chapter 1 Digital Systems and Binary Numbers

The 2421 and the excess-3 codes are examples of self-complementing codes. Such codes
have the property that the 9°’s complement of a decimal number is obtained directly by chang-
ing 1’s to 0’s and 0’s to 1's (i.e., by complementing each bit in the pattern). For example, dec-
imal 395 is represented in the excess-3 code as 0110 1100 1000. The 9’s complement of 604
is represented as 1001 0011 0111, which is obtained simply by complementing each bit of the
code (as with the 1’s complement of binary numbers).

The excess-3 code has been used in some older computers because of its self-complement-
ing property. Excess-3 is an unweighted code in which each coded combination is obtained from
the corresponding binary value plus 3. Note that the BCD code is not self-complementing.

The 8, 4, —2, —1 code is an example of assigning both positive and negative weights to a
decimal code. In this case, the bit combination 0110 is interpreted as decimal 2 and is calcu-
lated from8 X 0 +4 X 1 + (=2) X 1+ (—1) X 0 = 2.

Gray Code

The output data of many physical systems are quantities that are continuous. These data must
be converted into digital form before they are applied to a digital system. Continuous or analog
information is converted into digital form by means of an analog-to-digital converter. It is some-
times convenient to use the Gray code shown in Table 1.6 to represent digital data that have been
converted from analog data. The advantage of the Gray code over the straight binary number
sequence is that only one bit in the code group changes in going from one number to the next.
For example, in going from 7 to 8, the Gray code changes from 0100 to 1100. Only the first bit
changes, from 0 to 1; the other three bits remain the same. By contrast, with binary numbers the
change from 7 to 8 will be from 0111 to 1000, which causes all four bits to change values.

Table 1.6
Gray Code
Gray Decimal
Code Equivalent
0000 0
0001 1
0011 2
0010 3
0110 4
0111 5
0101 6
0100 7
1100 8
1101 9
1111 10
1110 11
1010 12
1011 13
1001 14
1000 15

Section 1.7 Binary Codes 23

The Gray code is used in applications in which the normal sequence of binary numbers may
produce an error or ambiguity during the transition from one number to the next. If binary
numbers are used, a change, for example. from 0111 to 1000 may produce an intermediate er-
roneous number 1001 if the value of the rightmost bit takes longer to change than do the val-
ues of the other three bits. The Gray code eliminates this problem, since only one bit changes
its value during any transition between 1wo numbers.

A typical application of the Gray code is the representation of analog data by a continu-
ous change in the angular position of a shaft. The shaft is partitioned into segments, and
each segment is assigned a number. If adjacent segments are made to correspond with the
Gray-code sequence, ambiguity is eliminated between the angle of the shaft and the value
encoded by the sensor.

ASCIl Character Code

Many applications of digital computers require the handling not only of numbers, but also of
other characters or symbols, such as the letters of the alphabet. For instance, an insurance com-
pany with thousands of policyholders will use a computer to process its files. To represent the
names and other pertinent information, it is necessary to formulate a binary code for the let-
ters of the alphabet. In addition, the same binary code must represent numerals and special
characters (such as S). An alphanumeric character set is a set of elements that includes the 10
decimal digits, the 26 letters of the alphabet, and a number of special characters. Such a set con-
tains between 36 and 64 elements if only capital letters are included. or between 64 and 128
elements if both uppercase and lowercase letters are included. In the first case, we need a bi-
nary code of six bits, and in the second, we need a binary code of seven bits.

The standard binary code for the alphanumeric characters is the American Standard Code
for Information Interchange (ASCII). which uses seven bits to code 128 characters. as shown
in Table 1.7. The seven bits of the code are designated by b, through b5, with b; the most sig-
nificant bit. The letter A. for example. is represented in ASCII as 1000001 (column 100, row
0001). The ASCII code also contains 94 graphic characters that can be printed and 34 non-
printing characters used for various control functions. The graphic characters consist of the 26
uppercase letters (A through Z), the 26 lowercase letters (a through z), the 10 numerals (0
through 9). and 32 special printable characters, such as %, *, and $.

The 34 control characters are designated in the ASCII table with abbreviated names. They
are listed again below the table with their functional names. The control characters are used for
routing data and arranging the printed text into a prescribed format. There are three types of
control characters: format effectors, information separators. and communication-control char-
acters. Format effectors are characters that control the layout of printing. They include the fa-
miliar word processor and typewriter controls such as backspace (BS), horizontal tabulation
(HT), and carriage return (CR). Information separators are used to separate the data into divi-
sions such as paragraphs and pages. They include characters such as record separator (RS) and
file separator (FS). The communication-control characters are useful during the transmission
of text between remote terminals. Examples of communication-control characters are STX
(start of text) and ETX (end of text). which are used to frame a text message transmitted through
telephone wires.

24 Chapter 1 Digital Systems and Binary Numbers

Table 1.7
American Standard Code for Information Interchange (ASCII)
bsbgbs

bsbsbyb; 000 001 010 011 100 101 110 m
0000 NUL DLE Sp 0 @ P p
0001 SOH DC1 ! 1 A Q a q
0010 STX DC2 " 2 B R b r
0011 ETX DC3 # 3 L & S c s
0100 EOT DC4 $ E D T d t
0101 ENQ NAK % 5 E U e u
0110 ACK SYN & 6 F A f v
0111 BEL ETB y: G w g W
1000 BS CAN (8 H X h X
1001 HT EM) 9 | 5% i y
1010 LF SUB A : J z j Z
1011 VT ESC + ; K [k {
1100 FF FS : < 4 \ 1 |
1101 CR GS = = M] m }
1110 SO RS ; > N A n ™
1111 SI us / ? o} - 0 DEL

Control characters

NUL Null DLE Data-link escape

SOH Start of heading DC1 Device control 1

STX Start of text DC2 Device control 2

ETX End of text DC3 Device control 3

EOT End of transmission DC4 Device control 4

ENQ Enquiry NAK Negative acknowledge

ACK Acknowledge SYN Synchronous idle

BEL Bell ETB End-of-transmission block

BS Backspace CAN Cancel

HT Horizontal tab EM End of medium

LF Line feed SUB Substitute

VT Vertical tab ESC Escape

EF Form feed FS File separator

CR Carriage return GS Group separator

SO Shift out RS Record separator

SI Shift in uUs Unit separator

SP Space DEL Delete

ASCII is a seven-bit code, but most computers manipulate an eight-bit quantity as a single
unit called a byte. Therefore, ASCII characters most often are stored one per byte. The extra
bit is sometimes used for other purposes, depending on the application. For example, some
printers recognize eight-bit ASCII characters with the most significant bit set to 0. An additional

Section 1.8 Binary Storage and Registers 25

128 eight-bit characters with the most significant bit set to 1 are used for other symbols, such
as the Greek alphabet or italic type font.

Error-Detecting Code

To detect errors in data communication and processing, an eighth bit is sometimes added to the
ASCII character to indicate its parity. A parity bir is an extra bit included with a message to make
the total number of 1's either even or odd. Consider the following two characters and their
even and odd parity:

With even parity With odd parity
ASCIT A = 1000001 01000001 11000001
ASCII'T = 1010100 11010100 01010100

In each case, we insert an extra bit in the leftmost position of the code to produce an even
number of I's in the character for even parity or an odd number of 1's in the character for
odd parity. In general, one or the other parity is adopted. with even parity being more
common.

The parity bit is helpful in detecting errors during the transmission of information from one
location to another. This function is handled by generating an even parity bit at the sending end
for each character. The eight-bit characters that include parity bits are transmitted to their des-
tination. The parity of each character is then checked at the receiving end. If the parity of the
received character is not even, then at least one bit has changed value during the transmission.
This method detects one, three, or any odd combination of errors in each character that is trans-
mitted. An even combination of errors, however, goes undetected, and additional error detec-
tion codes may be needed to take care of that possibility.

What is done after an error is detected depends on the particular application. One possi-
bility is to request retransmission of the message on the assumption that the error was ran-
dom and will not occur again. Thus, if the receiver detects a parity error, it sends back the
ASCII NAK (negative acknowledge) control character consisting of an even-parity eight
bits 10010101. If no error is detected, the receiver sends back an ACK (acknowledge) con-
trol character. namely, 00000110, The sending end will respond to an NAK by transmitting
the message again until the correct parity is received. If, after a number of attempts, the
transmission is still in error, a message can be sent to the operator to check for malfunctions
in the transmission path.

1.8 BINARY STORAGE AND REGISTERS

The binary information in a digital computer must have a physical existence in some medium
for storing individual bits. A binary cell is a device that possesses two stable states and is ca-
pable of storing one bit (0 or 1) of information. The input to the cell receives excitation sig-
nals that set it to one of the two states. The output of the cell is a physical quantity that
distinguishes between the two states. The information stored in a cell is 1 when the cell is in
one stable state and 0 when the cell is in the other stable state.

26 Chapter 1 Digital Systems and Binary Numbers

Registers

A register is a group of binary cells. A register with n cells can store any discrete quantity of
information that contains #n bits. The state of a register is an n-tuple of 1’s and 0’s, with each
bit designating the state of one cell in the register. The content of a register is a function of the
interpretation given to the information stored in it. Consider, for example, a 16-bit register
with the following binary content:

1100001111001001

A register with 16 cells can be in one of 2! possible states. If one assumes that the content
of the register represents a binary integer, then the register can store any binary number from
0to 2'® — 1. For the particular example shown, the content of the register is the binary equiv-
alent of the decimal number 50,121, If one assumes instead that the register stores alphanu-
meric characters of an eight-bit code, then the content of the register is any two meaningful
characters. For the ASCII code with an even parity placed in the eighth most significant bit
position, the register contains the two characters C (the leftmost eight bits) and I (the right-
most eight bits). If, however, one interprets the content of the register to be four decimal dig-
its represented by a four-bit code, then the content of the register is a four-digit decimal
number. In the excess-3 code, the register holds the decimal number 9,096. The content of the
register is meaningless in BCD, because the bit combination 1100 is not assigned to any dec-
imal digit. From this example, it is clear that a register can store discrete elements of infor-
mation and that the same bit configuration may be interpreted differently for different types
of data.

Register Transfer

A digital system is characterized by its registers and the components that perform data pro-
cessing. In digital systems, a register transfer operation is a basic operation that consists of
a transfer of binary information from one set of registers into another set of registers. The
transfer may be direct, from one register to another, or may pass through data-processing
circuits to perform an operation. Figure 1.1 illustrates the transfer of information among reg-
isters and demonstrates pictorially the transfer of binary information from a keyboard into
a register in the memory unit. The input unit is assumed to have a keyboard, a control cir-
cuit, and an input register. Each time a key is struck, the control circuit enters an equiva-
lent eight-bit alphanumeric character code into the input register. We shall assume that the
code used is the ASCII code with an odd-parity bit. The information from the input regis-
ter is transferred into the eight least significant cells of a processor register. After every
transfer, the input register is cleared to enable the control to insert a new eight-bit code
when the keyboard is struck again. Each eight-bit character transferred to the processor
register is preceded by a shift of the previous character to the next eight cells on its left. When
a transfer of four characters is completed, the processor register is full, and its contents are
transferred into a memory register. The content stored in the memory register shown in Fig. 1.1
came from the transfer of the characters “J,” “0,” “H,” and “N” after the four appropriate
keys were struck.

Section 1.8 Binary Storage and Registers 27

[0100101001001111110010001 1001 110 | 2ETAY

Register

Bcell.s HScells } Frocessur

YT g
8 cells Register

Keyboard ; 7 conTROL

FIGURE 1.1
Transfer of information among registers

To process discrete quantities of information in binary form. a computer must be pro-
vided with devices that hold the data to be processed and with circuit elements that manip-
ulate individual bits of information. The device most commonly used for holding data is a
register. Binary variables are manipulated by means of digital logic circuits. Figure 1.2 il-
lustrates the process of adding two 10-bit binary numbers. The memory unit, which nor-
mally consists of millions of registers, is shown with only three of its registers, The part of
the processor unit shown consists of three registers—gR/, R2, and R3—together with digital
logic circuits that manipulate the bits of ®/ and R2 and transfer into R3 a binary number
equal to their arithmetic sum. Memory registers store information and are incapable of pro-
cessing the two operands. However, the information stored in memory can be transferred to
processor registers, and the results obtained in processor registers can be transferred back into
a memory register for storage until needed again, The diagram shows the contents of two
operands transferred from two memory registers into R/ and R2. The digital logic circuits
produce the sum, which is transferred to register R3. The contents of R3 can now be trans-
ferred back to one of the memory registers.

The last two examples demonstrated the information-flow capabilities of a digital system
in a simple manner. The registers of the system are the basic elements for storing and holding
the binary information. Digital logic circuits process the binary information stored in the

28 Chapter 1 Digital Systems and Binary Numbers

MEMORY UNIT

Sum

[H]OO{]CIODOOF-‘

Operand 1 { e
Ioonmnoull

Operand 2

| ;
ﬁ0001onuom|:

-Jlnno'looooln Rl

Y

Digital logic
circuits for 0100100011 |R3
binary addition 7

I

o
10011100001 [R2

PROCESSOR UNIT

FIGURE 1.2
Example of binary information processing

registers. Digital logic circuits and registers are covered in Chapters 2 through 6. The memory
unit is explained in Chapter 7. The description of register operations at the register transfer
level and the design of digital systems are covered in Chapter 8.

1.9 BINARY LOGIC

Binary logic deals with variables that take on two discrete values and with operations that as-
sume logical meaning. The two values the variables assume may be called by different names
(true and false, yes and no, etc.), but for our purpose, it is convenient to think in terms of bits
and assign the values 1 and 0. The binary logic introduced in this section is equivalent to an
algebra called Boolean algebra. The formal presentation of Boolean algebra is covered in more
detail in Chapter 2. The purpose of this section is to introduce Boolean algebra in a heuristic
manner and relate it to digital logic circuits and binary signals.

Section 1.9 Binary Logic 29

Definition of Binary Logic

Binary logic consists of binary variables and a set of logical operations. The variables are desig-
nated by letters of the alphabet, such as A. B, C. x, v, z. etc.. with each variable having two and only
two distinct possible values: 1 and 0. There are three basic logical operations: AND. OR, and NOT.

1. AND: This operation is represented by a dot or by the absence of an operator. For
example, x*y = zorxy = zisread “xAND yis equal to z." The logical operation AND
is interpreted to mean that z = 1 if and only if x = 1 and y = 1: otherwise = = 0.
(Remember that x, y, and z are binary variables and can be equal either to 1 or 0, and
nothing else.)

2. OR: This operation is represented by a plus sign. For example, x + v = zisread "x OR
visequal to z," meaning that z = 1ifx = lorify = lorifbothx = landy = 1. If
both x = Qand ¥y = 0, then z = 0.

3. NOT: This operation is represented by a prime (sometimes by an overbar). For example,
x’ = z(or x = z)isread “not x is equal to z." meaning that z is what x is not. In other
words, if x = |, then z = 0, but if x = 0, then z = |. The NOT operation is also re-
ferred to as the complement operation, since it changesa I toOanda 0O to L.

Binary logic resembles binary arithmetic, and the operations AND and OR have similari-
ties to multiplication and addition, respectively. In fact. the symbols used for AND and OR are
the same as those used for multiplication and addition. However, binary logic should not be con-
fused with binary arithmetic. One should realize that an arithmetic variable designates a num-
ber that may consist of many digits. A logic variable is always either 1 or (. For example, in
binary arithmetic. we have | + 1 = 10 (read “one plus one is equal to 2"). whereas in binary
logic, we have | + 1 = 1 (read “one OR one is equal to one™).

For each combination of the values of x and y, there is a value of z specified by the defini-
tion of the logical operation. Definitions of logical operations may be listed in a compact form
called truth tables. A truth table is a table of all possible combinations of the variables, show-
ing the relation between the values that the variables may take and the result of the operation.
The truth tables for the operations AND and OR with variables v and y are obtained by listing
all possible values that the variables may have when combined in pairs. For each combination,
the result of the operation is then listed in a separate row. The truth tables for AND, OR, and
NOT are given in Table 1.8. These tables clearly demonstrate the definition of the operations.

Table 1.8
Truth Tables of Logical Operations
AND OR NOT

—_— =0 |+

—_——o o=
e O |

30

Chapter 1 Digital Systems and Binary Numbers

Logic Gates

Logic gates are electronic circuits that operate on one or more input signals to produce an
output signal. Electrical signals such as voltages or currents exist as analog signals having
values over a given range, say, 0 to 3 V, but in a digital system are interpreted to be either of
two recognizable values, 0 or 1. Voltage-operated logic circuits respond to two separate volt-
age levels that represent a binary variable equal to logic 1 or logic 0. For example, a partic-
ular digital system may define logic 0 as a signal equal to O volts and logic 1 as a signal
equal to 3 volts. In practice, each voltage level has an acceptable range, as shown in Fig. 1.3.
The input terminals of digital circuits accept binary signals within the allowable range and
respond at the output terminals with binary signals that fall within the specified range. The
intermediate region between the allowed regions is crossed only during a state transition. Any
desired information for computing or control can be operated on by passing binary signals
through various combinations of logic gates, with each signal representing a particular binary
variable.

The graphic symbols used to designate the three types of gates are shown in Fig. 1.4. The
gates are blocks of hardware that produce the equivalent of logic-1 or logic-0 output signals

Volts
4\
Signal
AT ‘ range for
R logic 1
Transition occurs
between these limits
R, Signal
range for
logic 0

FIGURE 1.3
Example of binary signals

X z=x+
y

(a) Two-input AND gate (b) Two-input OR gate (c) NOT gate or inverter

FIGURE 1.4
Symbols for digital logic circuits

Problems 31

AND:x -y LU 1 0 0
OR:x + ¥ U 1 1 1 0
NOT: x' 1 0 0 1 1

FIGURE 1.5
Input-output signals for gates

G=A+B+C+D

e

Dawa

(a) Three-input AND gate (b) Four-input OR gate

FIGURE 1.6
Gates with multiple inputs

if input logic requirements are satisfied. The input signals x and v in the AND and OR gates may
exist in one of four possible states: 00, 10, 11, or 01. These input signals are shown in Fig. 1.5 10-
gether with the corresponding output signal for each gate. The timing diagrams illustrate the re-
sponse of each gate to the four input signal combinations. The horizontal axis of the timing diagram
represents time, and the vertical axis shows the signal as it changes between the two possible volt-
age levels. The low level represents logic 0, the high level logic 1. The AND gate responds with
a logic 1 output signal when both input signals are logic 1. The OR gate responds with a logic |
output signal if any input signal is logic 1. The NOT gate is commonly referred to as an inverter.
The reason for this name is apparent from the signal response in the timing diagram, which shows
that the output signal inverts the logic sense of the input signal.

AND and OR gates may have more than two inputs, An AND gate with three inputs and an
OR gate with four inputs are shown in Fig. 1.6. The three-input AND gate responds with logic
1 output if all three inputs are logic 1. The output produces logic 0 if any input is logic 0. The
four-input OR gate responds with logic | if any input is logic 11 its output becomes logic 0 only
when all inputs are logic 0.

PROBLEMS

Answers to problems marked with * appear at the end of the book.

1.1 List the octal and hexadecimal numbers from 16 to 32. Using A, B. and C for the last three
digits. list the numbers from 8 to 28 in base 13.

1.2* What is the exact number of bytes in a system that contains (a) 32K bytes, (b) 64M bytes, and
(c) 6.4G bytes?

32

Chapter 1

1.3

1.4

1.5*

1.6*

e
1.8

1.10

1.11
1.12*%

1.13

1.14

1.15

1.16

Digital Systems and Binary Numbers

Convert the following numbers with the indicated bases to decimal:
(a)* (4310)s (b)* (198)1,
(c) (735)s (d) (525)6

What is the largest binary number that can be expressed with 14 bits? What are the equivalent dec-
imal and hexadecimal numbers?

Determine the base of the numbers in each case for the following operations to be correct:
(a) 14/2 =5, (b) 54/4 = 13,
(c) 24 + 17 = 40.

The solutions to the quadratic equation x> — 11x + 22 = Qare x = 3 and x = 6. What is the
base of the numbers?

Convert the hexadecimal number 68BE to binary, and then convert it from binary to octal.

Convert the decimal number 431 to binary in two ways: (a) Convert directly to binary; (b) con-
vert first to hexadecimal and then from hexadecimal to binary. Which method is faster?

Express the following numbers in decimal:

(a)* (10110.0101), (b)* (16.5)16
(0)* (26.24)g (d) (FAFA)jq
(e) (1010.1010),

Convert the following binary numbers to hexadecimal and to decimal: (a) 1.10010, (b) 110.010.
Explain why the decimal answer in (b) is 4 times that in (a).

Perform the following division in binary: 111011 + 101.

Add and multiply the following numbers without converting them to decimal.
(a) Binary numbers 1011 and 101.
(b) Hexadecimal numbers 2E and 34.

Do the following conversion problems:

(a) Convert decimal 27.315 to binary.

(b) Calculate the binary equivalent of 2/3 out to eight places. Then convert from binary to dec-
imal. How close is the result to 2/3?

(c) Convert the binary result in (b) into hexadecimal. Then convert the result to decimal. Is the
answer the same?

Obtain the 1’s and 2’s complements of the following binary numbers:

(a) 10000000 (b) 00000000

(c) 11011010 (d) 01110110

(e) 10000101 (f) 11111111,

Find the 9's and the 10’s complement of the following decimal numbers:
(a) 52,784,630 (b) 63,325,600

(c) 25,000,000 (d) 00,000,000.

(a) Find the 16’s complement of B2FA.

(b) Convert B2FA to binary.

(c) Find the 2’s complement of the result in (b).

(d) Convert the answer in (c) to hexadecimal and compare with the answer in (a).

1.7

1.19*

1.20

1.22

1.23

1.24

1.26

1.27

1.28

Problems 33

Perform subtraction on the given unsigned numbers using the 10’s complement of the subtra-
hend. Where the result should be negative. find its 10's complement and affix a minus sign. Ver-
ify your answers.

(a) 6,428 — 3,409 (b) 125 — 1,800

(c) 2,043 — 6,152 (d) 1.631 — 745

Perform subtraction on the given unsigned binary numbers using the 2's complement of the sub-
trahend, Where the result should be negative, find its 2's complement and affix a minus sign.

(a) 10011 = 10001 (b) 100010 — 100011
(c) 1001 - 101000 (d) 110000 — 10101
The following decimal numbers are shown in sign-magnitude form: +9,286 and +801. Convert

them to signed- 10"s-complement form and perform the following operations (note that the sum
is +10.627 and requires five digits and a sign).

(a) (+9.286) + (+801) (b) (+9.286) + (-801)

(c) (~9.286) + (+801) (d) (-9.286) + (—801)

Convert decimal +46 and +29 to binary, using the signed-2's-complement representation and
enough digits to accommodate the numbers, Then perform the binary equivalent of
(+29) + (—49), (—29) + (+49).and {(—29) + (—49). Convert the answers back to decimal
and verify that they are correct.

If the numbers (+9,742),, and (+641),y are in signed magnitude format, their sum is
(+10,383) 4 and requires five digits and a sign. Convert the numbers to signed-10's-comple-
ment form and find the following sums:

(a) (+9.742) + (+641) (b) (+9,742) + (—641)

(c) (—9.742) + (+641) (d) (—9.742) + (—641)

Convert decimal 8,723 to both BCD and ASCII codes. For ASCIL. an even parity bit is to be ap-
pended at the left.

Represent the unsigned decimal numbers 842 and 537 in BCD. and then show the steps neces-
sary to form their sum,

Formulate a weighted binary code for the decimal digits, using weights

(ay*6,3, 1,1

(b) 6.4,2,1

Represent the decimal number 5.137 in (a) BCD, (b) excess-3 code. (¢) 2421 code, and (d) a
6311 code.

Find the 9's complement of decimal 5,137 and express it in 2421 code. Show that the result is
the 1's complement of the answer to (¢) in Problem 1.25. This demonstrates that the 2421 code
is self-complementing.

Assign a binary code in some orderly manner 1o the 52 playing cards. Use the minimum number
of bits.

Write the expression “G. Boole” in ASCIL, using an eight-bit code. Include the period and the
space. Treat the leftmost bit of each character as a parity bit. Each eight-bit code should have
even parity. (George Boole was a 19th century mathematician. Boolean algebra, introduced in
the next chapter. bears his name.)

Chapter 1 Digital Systems and Binary Numbers

1.29% Decode the following ASCII code:
1000010 1101001 1101100 1101100 1000111 1100001 1110100 1100101 1110011.

1.30 The following is a string of ASCII characters whose bit patterns have been converted into hexa-
decimal for compactness: 73 F4 E5 76 E5 4A EF 62 73. Of the eight bits in each pair of digits,
the leftmost is a parity bit. The remaining bits are the ASCII code.

(a) Convert the string to bit form and decode the ASCIL.
(b) Determine the parity used: odd or even?

1.31* How many printing characters are there in ASCII? How many of them are special characters
(not letters or numerals)?

1-32* What bit must be complemented to change an ASCII letter from capital to lowercase and vice
versa?

1.33* The state of a 12-bit register is 100010010111. What is its content if it represents
(a) three decimal digits in BCD?
(b) three decimal digits in the excess-3 code?
(c) three decimal digits in the 84-2-1 code?
(d) a binary number?
1.34 List the ASCII code for the 10 decimal digits with an odd parity bit in the leftmost position.

1.35 By means of a timing diagram similar to Fig. 1.5, show the signals of the outputs f and g in Fig. P1.35
as functions of the three inputs a, b, and c. Use all eight possible combinations of a, b, and c.

abe

i

FIGURE P1.35

1.36 By means of a timing diagram similar to Fig. 1.5, show the signals of the outputs f and g in Fig.
P1.36 as functions of the two inputs a and b. Use all four possible combinations of a and b.

FIGURE P1.36

References 35

REFERENCES
1. CAVANAGH.). J. 1984, Digital Computer Arithmetic. New York: McGraw-Hill.
2. MaNo, M. M. 1988, Computer Engineering: Hardware Design. Englewood Cliffs, NJ: Prentice-
Hall.
3. NELsoN, V. P., H, T. NaGLE, J. D. IrwiN, and B, D, CarroLL. 1997, Digital Logic Circuit Analy-
sis and Design. Upper Saddle River, NJ: Prentice Hall,
4, Scumip, H. 1974. Decimal Computation. New York: John Wiley.

	01 – Digital Systems and Binary Numbers.PDF
	1.tif
	2.tif
	3.tif
	4.tif
	5.tif
	6.tif
	7.tif
	8.tif
	9.tif
	10.tif
	11.tif
	12.tif
	13.tif
	14.tif
	15.tif
	16.tif
	17.tif
	18.tif
	19.tif
	20.tif
	21.tif
	22.tif
	23.tif
	24.tif
	25.tif
	26.tif
	27.tif
	28.tif
	29.tif
	30.tif
	31.tif
	32.tif
	33.tif
	34.tif
	35.tif

