
Chapter 3

Gate-level minimization refers to che design task of finding an optimal gate-level imple-
mentation of the Boolean functions describing a digital circuit. This task is well under-
stood, but is difficult to execute by manual methods when the logic has more than a few
inputs. Fortunately, computer-based logic synthesis tools can minimize a large set of BwIean
equations efficiently and quickly. Nevertheless, it is important that a designer understand
the underlying mathematical description and solution of the problem. This chapter serves
as a foundation for your understanding of that important topic and will enable you to exe-
cute a manual design of simple circuits, preparing you for skilled use of modern design
tools. The chapter will also introduce a hardware description language that is used by mod-
ern design tools.

3.2 THE M A P METHOD

The complexity of the digital logic gaks that implement a Boolean function is directly related
to the complexity of the algebraic expression from which the function is implemented. Al-
though the truth table representation of a function is unique, when it is expressed algebraically
it can appear in many different, but equivalent, forms. Boolean expressions may be simplified
by algebraic maus as discussed in Section 2.4. However, this procedure of minimhation is awk-
ward because it lacks specific rules to predict each succeeding step in the matiipuhtive process.
The map method presented here provides a simple, straightfmard procedure for minimidng
Boolean functions. This method may be regarded as a pictorial form of a truth table. The map
method is also h o w n as the Karnaugh map or K-mup.

Section 3.2 The Map Method 71

A K-map is a diagram made up of squares, with each square represenling one minterm of
the function that is to be minimized. Sinceany Boolean function can be expressed as a sumof
mintermr. it fallows that a Bwlcan funclian is recognized graphically in the map hom the
area enclosed by those squarer whose mintem are included in the function. lo fact. the map
presents a visual diagram of all possible ways a function may be expressed in standard form.
By n e o w g various panemr, the user can derive alternative algebraif expressions for the
same function. fmm which the sirnolest can be releeted.

The 'impllfied cxprer\lon$ produced by the map arc always in one of the two ~tandard
forms: sum of pndun. ur product oi,ums. It w~li k a\.urnrd that the simples algebwc cr-
pression is an algebraic expression with a minimum number of terms and with ~e smaUert
possible number of literals in each term. This expression produces a circuit diagram with a
minimum number of eater and the minimum number of i n ~ u t r to each pate. We will see sub-
sequently that the simplest expression is not unique: It is sarnelimcs possicle to tind twoor more
expressions that satisfy the minimization criteria. In that case, either solution is satisfactory.

Two-Varlable Map

Thenrrrvmahlc map is ,houn~c> big 3 l(a).'lhcrr. srr few mlacrm. fiamrl vanahlcy h e m .
the map conrlrtr oifour sqdarcr, one foreach mntem.The map tr redraun in ibl to show the
relationship between the squares and the two variablesx and y. The 0 and I markedin each row
and column designate the values of variables. Vaiablex appears pdmed inmw 0 and unprimed
in rnw I. Similarly, y appears primed in column 0 and "riprimed in column 1. 1 ,

I 1 ry' ry

(a) (b)

FIGURE 3.1
Tw~vaLable map

If we mark the squares whose m i n t e m belong to a given function. the two.vaiable map
becomes another useful way to represent any oneaf the 16 Boolean functions of two variables.
As an example, the function xy is shown in Fig. 3.2(a). Since xy is equal lo my, a 1 is placed
h i d e the square that belongs to ml. Similarly, the function x + y is represented in the map
of Fig. 3.2(b) by Wee squares marked with 1's. These squares are found fmm the m i n t e m of
the function:

ml + rn* + m) = x'y + xy' + xy = x + y

The bee squares could also have becn determined fmm the inccrsectian of variable x in the
second row and variable y in the second column, which encloses the area belonging to x or y.
In each example, the mintems at which the function is assened are marked with a 1

Chapter 3 Gate-level Mtnlmization

FIGURE 3.2
RepresentatIMi of functlms in the map

*CURE 3.3
The-varlabie map

Three-Vad* Map

A bee-variable map is shown in Fig. 3.3, There are eight rninterrns for three binary variables;
therefore, the map consists of eight squares. Note that the minterms are arranged, not in a bi-
nary sequence, but in a sequence similar to the Gray code (Table 1.6). The characteristic of this
sequence is that only one bit changes in value from one adjacent column to the next. The map
drawn in part (b) is marked with numbers in ea@ row and each column to show the relation-
ship between the squares and the three variables. For example, the square assigned to m~ cor-
responds to row 1 and column 01. When these two numbers are concatenated, they give the
binary number 101, whose decimal equivalent is 5 , Each cell of the map corresponds to a
unique mintem, so another way of looking at square wm5 = xy 'z is to consider it to be in the
row rnarked x and the column belonging to y 'r (column 01). Note that there are four squares
in which each variable is equal to 1 and four in which each is equal to 0. The variable appears
unprimed in the former four squares and primed in the latter. For convenience, we write the vari-
able with its letter symbol under the four squares in which it is unprimed.
To understand the usefulness of the map in simplifying Boolean functions, we must recog-

nize the basic property possessed by adjacent squares: Any two adjacent squares in the map dif-
fer by only one variable, which is primed in one squat and unprimed in the other. For example,
ms and m7 lie in two adjacent squares, Variable y is primed in rn5 and unprimed in na7, where-
as the other two variables are the same in both squares, From the postulates of Boolean algebra,
it follows that the aum of two mintem in adjacent squares can be simplified to a single AND

Section 3.2 The Map Method 73

t em consisting of only two liteds. To clarify this concept, consider the sum of two adjacent
squarer such as mS and m7:

ms + mi = r y ' : + x y r = x:(y' + y) = xr
Hue, the two squares diffa by the variables. whioh can be m o v e d when the sum of the ~ v o
mintems is formed. Thus, anv two miate- in adiacmi souares (verticallv or horizonlallv. but
not dmgonally, adjdccntl thliu.are ORcd togelher u ; ~ c a u s i remoial of th; h m l a r viable.
Tne next tourexamplc~expla~n the p m d w fur rmrumvlng a Bwlr.an funchon 8th u map.

Simplify the Boolean function

F (x . y. 2) = X(2.3.4.5)
First, s 1 is markedin eacb mintem that represents the function. This is shown in Fig. 3.4, io
which the squares for miaenas 010.011, 100, and 101 arr marked with 1's. The next steo is
to fmd possible adiacent souares. Thew we indicated in the maa bv ma nctansles. each en- . , ~ ~~ - ~ ~ ~ . ~~~~ ~ ~~~

closingmo 1's. K;c upper right rectangle rcprevnls the area enclosed by r Y. This area is de-
lermlned by observing that the two-squarc area is in mu 0. com5pondmg to x ' , and the last
two columns, corresponding to g. Similarly, the lower left rectangle cep&rents the pmduct
rem xy' . (The second raw represents x and the two let? columns represent y ' .) The l og id
sum of these two product t m r gives the simplif~ed expression

F = x'y + xy'

- 3.4
Map fw Exmtpk 3.1, €(r, 5 I) = X(2,3.4,5) = x'y + xy'

lo certaio cases, IWO squares in the map are considered to be adjacent cven though they do
not touch each other. In Fig. 3.3, mo is adjacent to m l and m, is adjacent to m6 because the
mintems differ by one variable. mhir difference can be xadily vetitied algebraically:

mo + m2 = x'y'r' + x'yr' = x ' ~ ' (y ' + y) = X ' Z '

m4 + m6 = XY'Z' + xyr' = x:' + 0.' + y) = xr'
Consequently, we must modify the definition of adjacent squm to include this and othersim-
ilarcasa. We do so by considering the map ar being drawn on a surface in which theright and
left edger touch each other to farm adjacent squares.

, - . _ I -.- , .
i , , 74 Cbpter 3 G-Lwel Minimlzatlon , .:

I < - - . ' r . , .-
, - .

I .

-. .
i '
-0 . ' .:

< - - -. . . -..
- C , > L b

. . .. - - . 3
S i b the Boolean function . - , . .

' , -
- ,j

- .. ,
; - .. - - - <-. . ;, . , . ''> jQ

, . . Ibc mqt fm this function is shown in Fig. 3.5. There are four squares rnarkd with '1%. o&$?
1; , foteach minterm of the function. lho adjacent squares we combined in the third column to:;<i?

m . .
t - , , : : . - . give a meliteral term yz. The ~maining two squares with 1's are also adjacent by the new':<

ddhition. These two squares, when combined, give the two-literal tern xz'. The simpmed:,.'.+ .>
ma;., 1 1 - F,? r;z:.>. - . - -. , , . filIMAim then berow , - I ' I , . . . ' ? - , : - - ' , . . ,:*
I . . - - . , .,'.-; ', ..:- I . . -'.... ' L . : . , ,> ' ..I . - ;:li .. , . . - - t r -

*-.
. . , . . F = P + X Z ' , ,a , .. . ,:.

a 7- . -. - ..;. b , . ' :, I:
- -
-

.- . jq
: ; l i

2 , .

, . '1;
4 I. - : . .-;., d > ! . - . . ,'C

:I*: ,:, ' * , - - - - >
' . .

I . " I , I - - . . . 'i: . .., - - . , - -
m 1 :.>, , ,.< ..;-I:. . .- 2 -- , . . I #>

, , . , -> .-
L

. . , .
, . 1' --

.i
- - , ,.-, - - - 3 ., t - .

->bJ

. . . ir
, '.. 4 . , '!

;?

:':
. . , , , JL

. -
, . . Nore: xy'z' f xyr' = XZ' I./

, <+
..,

BbuIIp3-S - . . -. .
~Map'f&kam@s 3.2, F(x, y, Z) = 2;13,4,6 77) = yz + m' .- i

' ~onsider'now any combination of four adjacent squares in the threevariable map. Any such
combination represents the logical sum of four mintems and results in an expression with only '

one Literal. As an example, the logical sum of the four adjacent mintems 0,2,4, and 6 reduces
to the single literal term 2 ' : - ' ? x

, .+ - . ;7 . 0 - ' >,y

A'. mo f ?2 + mq + mg = x'y'z' + x'yz' + xy'z' + xgz'
I -: .

A =
.* -- . : t' . . . - , = xtz'(y' + y) +xz'(yt + y)

= x'z' + xz' = z'(x' + X) = 2'

The number of adjacent squares that may be combined must always represent a number
that is a power of two, such as 1,2,4, and 8. As more adjacent squares are combined, we ob- A

tain a product term with fewer literals. -

One square represents one mintem, giving a term with three literals.

Two adjacent squares represent a term with two literals. , .
G

Four adjacent squares represent a term with one literal. . 2; :,
I,:

Eight adjacent squares encompass the entire map and produce a function that is always ,..,
I . . , m ' r

equal to 1. ,:- -- ,-<.-J -
L: . - -

. P
8 ,":, ; .yi

>+',: < - , . - , , ,i

I, - A',
<

L ' 7 ,

Seaion 3.2 The Map Method 75

Simplify the Bwlean function

F (x , y. z) = X(O,2.4.5,6)

The map for F i r shown in Fig. 3.6. First, we combine the four adjacent squares in the f i t and
larr columns m give the single Literal tern 2'. The remaining single square, rrpnocntingminterm
5, is combined with an adjacent square that has already teen used once. This is not only pr-
misribie. but rather dcEirable, because the two adjacent squares give the t w o - l i d urn xy'
and the single square represent8 the three-iiural minlerm xy'i. The simplified function is

F = Z' + ry'

If a function is not expressed in sum-of-mintem form, it is possible to use the map to ob-
tain the mintem of the function and then simplify the function to an expression with s mini.
mum number of t e rn . It is necessary, however, to make sure that the algebraic e rpss ion is
in sum-of-produce form. Each product tern can be plotted in the map in one, ovo, or more
squares. The mintems of the function are thenread directly from the map.

Let the Boolean function

F = A'C + A'B + AB'C + BC

(a) Express this function sr a sum of mintemx
(b) Find the minimal sum-of-products expression.

T k product terms in the expression have two literals and are repffinted in a Lhree-variable
map by two squares each. The two squares companding to the he1 tcnn. A'C, are found in
Fig. 3.7 from the coincidence of A' (firrt row) and C(two middle columns) togive q w e s 001

::.
i::

-

. 76 Chapter 3 Gate-Level Mlnlmixatton

Fmm 3.7
Map for Example 3.4, A T -t At& + AB'C + K = C + A'P

and 01 1, Note that, in marking 1's in the squares, it is possible to find a 1 already placed there
from a preceding term. This happens with the second term, A ' 3, which has 1's in squares 01 1
and 01 0. Square 0 11 is common with the fmt term, A'C, though, so only one 1 is marked in
it. Continuing in this fashion, we determine that the term AB 'C belongs in square 101, corre-
sponding to mittterm 5, and the term BC has two l 's in squares 01 1 and 1 11, The function has
a total of five minterms, an indicated by the five 1's in the map of Fig. 37 . The mintmu are
read directly from the map to be 1,2,3, 5, and 7. The function can be expressed in swuqf-
mintems form as

The sum-of-products expression, as originally given, has too many terms. It can be s i m p M d ,
as shown in the map, to an expression with only two terms:

F = C + A'B

3 . 3 FOUR-VARIABLE M A P

The map for Boolean functions of four binary variables is shown in Fig. 3.8. In (a) are listed
the 16 mintem and the squares assigned to each. In (b), the map is redrawn to show the re-
lationship between the squares and the four variables, The rows and columns are numbered in
a Gray code sequence, with only one digit changing value between two adjacent rows or
columns. The minterm corresponding to each square can k obtained from the c w c m t i o n
of the mw number with the column number. For example, the numbers of the third mw (11)
and the second column (011, when concatenated, give the binary number 1101, the binary
equivalent of decimal 13. Thus, the squue in the third row and second column represents
minterm ~9113.

The map minimization of four-variable Boolean functions is similar to the method used to
minimize three-variable functions. Adjacent squares are defined to be squares next to each
other. In addition, the map is considered to lie on a surface with the top and bottom edges, as
weU as the right and left edges, touching each other to form adjacent squares. For example,

1.)

RGUW 31
Fow-variable map

Y i
Y

W x W 01 11 10
II. I", I.. Im. I

ma aod m2 formadjaceIUsqms, as do m, andmt~. Thecombination of adjacent squarer that
u useful during the simplifidon process is easily dctsrmincd from iospection of the f a w
variable map:

One square represents one mintem, giving a tern with four litaals

l b o adjacent squares represent a rerm with Uuec Lilerals.

Four d j a m t squares nprrwnl a term with two literals.

Eight adjscent squares reprrwal a t m with one literal.

Sixteen adjacent r g u ~ p m d m a function ihu is always equal to 1.

No other mmbihation of s q m s cao simplify the function. Tbc next two uamph show
the pmccdurs used to simpIify four-vadable B w l w functions.

Simplify the Bwlcsn function

Since the M o n has four vmiablcs, a four-variable map must be used Tbc minterms listed
in the sum are m k e d bv 1's in the mm of Fie. 3.9. EiM adiscent muarer marked with 1's - .
em be combined to f- the one livGterm ,'. The rrmsininp Uuec'l's m the right c m m
be combined to give nsimplifiedm; they must be combined m two or four adjacent squarer.
The larger the number of s q m s combineb the smalla is the n u m b of literals in thc fsrm.
In this crmple, the top two 1's on the right are combined with the top IWO 1's on the lch to
give the term w'r'. Now that it is permissible to use the same square more than once. We are

ivoce: w'y'z' f w'yz' = w'z' .' .
xy'z' + qz' = xt' , I .

a .. now left with a square marked by 1 in the third tow h d fourth column (square 1110). Instead
of taking this square alone (which will give a-term with four literals), we combine it with
squares already used to form an area of four adjacent squares. These squares make up the two
middlerows and the two end columns, giving the tern xz' . The simplified function is

o m I ~ Simplify the Boolean function

The area in the map covered by tbis hc t ion consists of the squares nuked with.l% inFg, 3,lQ
The function has four variables and as expressed, consists of thee tuWw& N k m b ehh
and one term with four literals. Each tern with three BteraIs is represented in the map by two
squares. For example, A'B'C' is represented in squares 0000 and Wl. The function can be sim-
plified in the map by taking the 1's in the four corners to give the term B'D'. This is possible

..because these four squares are adjacent when the map is drawn in a surface with top and bot-
tom edges, as well as left and right edges, touching one another. The two left-hand 1's in the top
;TOW are combined with the two 1's in the bottom row to give the term B'C'. The remaining 1
may be combined in a two-square area to give the term A'CD'. The simplified function is

Section 3.3 Four-Variable Map 79

RCUlE 3.10
Map fw Example 3.6. A'B'C' + B'CD' + # E D ' + M'C' - B'D' + B'C' + A'CD'

In chwsing adjacent squares in a map, we must ensure that (1) all the mintem of h e func-
tion are covered when we combine the rauaren. 12) the number of terms in the exmession is
m m ~ m r d , and (3) t h ~ w am no redundmt sm. (1.e . mioterm, already covered by "her terms).
Sumetirnus thcrc may be tuu or mure cxprcsrh>nr that ,rurfy the rimplificativn unteria. TbL:
pmcedure for comb in in^. s g m s in the &P may be made mare systematic if we understand
the d g of two special ryps of t e rn . Aprbne implicant b aproduct term obtained by c m -
bining the &urn possible number of adjacent squares in the map. Ifa mintem in a squpn
is covered by only one prime implieant, that prime implieant is said to be e~senri111.

The p h implicants of a function can be obtained from the map by combining all p s i -
ble &urn numbers of squarer. This means that a single I on a map represents aprimc im-
plicanl ifil is not adjacent ro any other 1's. Two adjscenl 1's forms prime implieant, provided
that they are not within a gmup of four adjacent squares. Four adjacent 1's form a prime im-
plicant if they are not within a group of eight adjacent squares, and so on. The esrcntial prime
implicants are found by looking at each square marked with a I and checking the number of
prime implicants that cover it. The prime implicant is essential if it is the only prime implicant
that covers the mintem

Consider the following four-variable Bwlean function:

F(A, B,C, D) = X(O,2,3,5.7,8.9. LO, 11. 13, 15)

mintem of the function are &d with 1's in the maw of Fie. 3.11. 'h ~ m t i d mao (m - . -
(a) of me figure) shows nuo essential prime implicants, each fnmcd by coll~pshg fovr cells into
a term having only two literals. One term is essential because t h m is only m way to include

Note: A 'B'C1D' + A'B'CD' = A'B'D'
ABf C'D' + AB'CD' = AB'D'
A'B'D' + AB'D' = BfD'

(a) Essential prime impliwts
BD and B'D'

HCW6 3.1 1
Slmplificatlon uslng prima implicants

@) Prime implicants CD, B'C,
AD, and AB'

mintem pno within four adjacent squares. These four squares define the term BID'. Sjmilarly,
there is only one way that minterm mg can be combined with four adjacent squares, and this gives
the second term BD. The two essential prime implicmts cover eight mintem. The three mintem
that were omitted from the partial map (m3, m, and mil) must be considered next

Figure 3.1 1 (b) shows dl possible ways that the three mintems can be covered with prime
implicants. M i n m pn3 can be covered witb either prirne impiicant CD or prime iqlicant
B'C. Minterm ms can be covered with either AD or AB'. Minterm r n l l is covered with any one
of the four prime implicants. The simplified expression is obtained fmm the logical sum of the
t ~ r , essential prime implicants and any Wo prime implicants that cover mintems na 3, mg, and
mil. There are four possible ways that the function can be expressed with four product terms
of two literals each:

= ED + B'D' + CD + AB'
= BD + B'D' + B'C -t AD
= BD + B'D' + B'C + AE'

The previous example has demonstrated that the identification of tbe prime implicmts in the map
helps in determining the alternatives that are available for obtaining a simplified expssion.

The procedure for fmding the simplified expression from the map requires that we first de-
termine all the essential prime implicants. The simplified expression is obtained h c u the log-
ical sum of all the essential prime implicants, plus other prime irnplicants that may lx needed
to cover any remaining minterms not covered by the essential prime implicants. Occasionally,
there may be more than one way of combining squares, and each combination may p d u c e an
equally simplified expression.

Section 3.4 Ftve-Variable Map 81

3.4 FIVE-VARIABLE M A P

Maps for more than four variables are not as simple to use as maps for four or fewer variables.
Afive-variable map needs 32 sauares and a six-variable mao needs M sauaren. When the num- ~ ~ ~

br.r of variables become5 l q r . t k number uf ,qum becomes cxceslvc and the geometry lor
comhining adjacent squms hecomes more involved
The fiw-vanable map is shown in Fig. 3.12. 11 consists of 2 four-vanable maps ulth van-

ables A. B. C, D, and E. VarisbleA distinguishes bemen the two maps, as indicated at the top
of the diamam. The left-hand four-variable man remesents the 16 souares in which A = 0. . . -.
and the other four-vanable map =presents the squares in whch A ='I. Mintrrms 0 &ougb
15 belong with A = 0 and mintcms 16 through 31 with A = I. Each four-variable mapre-
tains the prcviourly defined adjacency when taken separarely. In addition, each square in the
A = 0 map is adjacent to the unresponding square in the A = I map. For example. mintem
4 is adiaceot to mintem 20 and mintem 15 m 31. The best wsv la visualire thir new ride fnr . ~~ ~-~~ ~

adjacent squares is to consider tbc two half maps as being one on top of the other. Any hvo
squares that fall one over the other are considered adjacent.

By following the procedure used for the fivevariable mao, it is wssible to consmct a six-
winhle map ulth 4 four-vanablemap toobun the rcqumd & uluks . Maps wnh rix or more
\ariablcr nezd too many squarer and me hpract!cat la use. The alrernsuve rr to employ com-
puter programs rpccificdl) wnnen to iaclLtate the simplficat~on of Boalean funcuonr wth a
large number of variables.

BY inspection, and Liking iato account the new d e f ~ t i o n of adiacent mares. it is wssible
to show &at any 2' adlacent squares, fork = (0, 1.2.. . . . n) in n-v&ble map. ;ill np
mwnr an amthat glvcs atermofn - k heralr. For thir aaremcnt m have any meanmg. hou-
ever, n murl be larger than k. When n - k . the cnllrc area nt b e map tr combined to 0 ° C Ulc

F I C M 3.12
F lw-vutde map

Table 3.1 : f
r r # k h t b m h i p ~ t k H m b u b ~ M t S q w r r * ~ d t t r O ' ' - '

N W n b d M h t k T e n n

Number of
Adjacent Number of Llkrals
Squares In a Tern In an n-vrrlable Map

i&ntiq functian, Table 3.1 shows the relationship between the number of adjacent squares
and the number of liteds in the term, For exampl, eight adjacent squares combine an m a in . ' the five-varihle map to give a term of two literals. - 4 -

.y' . '.; - . , - 'I

The five-vwiabl map for this function is shown in Pig, 3.13. There are six minterms h m .
0 to 15 that belong to the part of the map with A = 0. The other five m i n t e m belong with
A = 1. Four adjacent squares in the A = 0 map are combined to give the three-literal term
A'B'E'. Note that it is necessary to include A' with the term because all the squares are as-
sociated with A = 0. The two squares in column 01 and the last two rows are common to
both parts of the map. Therefme, &ey constitute four adjacant'squares and give the t h t -
litetal term BD'E. Variable A is not included here because the adjacent squaree belong to
both A = 0 and A = 1. The term ACE is obtained from the four adjacent squares that are
entirely within the A I map, The simplified function is the logical sum of the three
t$*:
mII_ _ . .: .' -

I . _

F = A'B'E' + BD'E -+ ACE

H C W 3.13
Map for Example 3.7, F = A'II'E' + BD'E + ACE

3.5 PRODUCT-OF-SUMS SIMPLIFICATION

The minimized Bwlean functions derived from the map in all previous examples were ax-
pressed in sum-of-pmducts form. With aminar mditication, theproduct-of-sums form can be
obtained.

The prwedure for ohaining a rninim1,cd funct8on in praduct-of-\urnr i n n follour from
the haw pmpenles vf Bwlean functions. The I ' 5 placed in the square, of the map reprerent
the minnrms of the function. The mintsrms not incfndedin the srandard sum-of-pmdueis farm
of a function denote the complement of the function. Fmm this observation, de see that the
complemenr of a function is represented in the map by the squares not marked by 1's. Ifwe
mark the empty squares by 0 ' s and combine them into valid adjacent squarer. we obtain a
simplifted expression of the complement of the function (i.e.. of F'). The complemcnr of
F' gives us back the function F. Because of thegeneralized DeMorgan's theorem, the func-
tion so obtained is automatically in pmduct-of-sums form. The best way to show this is by
examph.

L ..
D

- .

1,-4-.

No& BC'D' + BCD' - BD' 5 . , , . -
A14

, . , M ~ ~ - ~ ~ ~ ~ . $ F (A , & C , D) = Z (O , ~ , ~ , & ~ , ~ , ~ D) - F P + B ' C + A ' C ' D =
(A' + F)(CL + D')(B' + 0) . -

EXAMPLE 3.8

Simplify the following B o o l a function into (a) sumsf-products form and (6) --of- ,.

sums form: , .. , I ., r ' I . .' . ' I

Th= 1's 'barked in the map of Fig, 3,14 represent all the minterma of the function. The
squares marked with 0's represent the mintcrms not included in F and therefore denate the '-I
complement of F. combining h squares with 1's gives the simplified function in sum-of- $
products form: I . ., . - . ., , - --... A :' , : I

(a) F = B'D' + BIG' + A'C'D ' .
, . .

If the squares m k e d with 0's are combined, as shown in the dislgram, Re & ;I.
- .

8 - - - . m r t simpfified comp@mted . ,.- function: ,:,- - . . " - , .,.,,,P,. :!!'.' .- . " - -,; - -. , -: ' . . F' = AB + CD -k BD'
I . Applying DeMorgan's themem @y talciag the dual and complementing & literal as de

scribed in Section' 2,4), we obtain the simplified @ction bj pmle-of-sums form: ". - : * .,.,:-,, :-,,.>, L ! - . . : . - - . , I.
-I

. I ' . ,,; ' ,, ,(b) F = (A' + B'J(C1 t D 1] (B ' + D) , -, .-., .: :; , -: . r , , - . . - . , - . a , 'd,
I , , - ' - - , :-. - -

, 8 . . , ,:--;<:+..,: 8: = - - .
.I

, ..' , - - - - _._.. .. - , - .. > - - , . , . ._ . . .# , . . - L - . ' -- . . , ,8 . , . .: :. . . :<. '. . : .. * - 3
- . . - ,. . '

The implementation of the simplified expressim obtained in Exmple 3.8 is shown in . . 2
Fig. 3.15. The gum-of-products expression is implemented in (3 with a goup sf AND gates, .:
one for each AND term. The outputs of the AWD gates are connected to the inputs of a sin- .'
gle OR gate. The same function is implemented in (b) h its product-r-of*sums forin with a I-.:

group of OR gates, one for each OR term. The outputs of the OR gates are connected to the 2
inputs of a single AND gate. In each case, it is assumed that the input variables are directly i)

..::..~.
D'

C' D' :~:,:<:; :
F

.. ~:... :~..::.:... ..: . ~ . ~ .. ~
D <:;.:;.:~.

(a) f = BID' + B'C + A'C'D (b) f = (A' + 8') (C' + D') (8' t D)

FIGURE 3.15
Gate irnpkmemations of the lvnNon of Example 3.8

Table 3.1
Truth Tabk of Fun& F

x v 1 I F

available in their camplemcnt, so inverters are no1 needed. The configuration panern errah-
lished in Fie. 3.15 is the general form bv which anv Bmlean function is imolcmeaed when . -
cxpresed in one of the standard farms AND gales are co~c.led lo a btngle OR gate uhen
In sum-of-prdurt, form. OK gates arc ~onnecled lo a slngle AND gate uhro m produrt.uf.
s m form. Either configuration forms two levels of gates. Thus, the implemenmtion of a
function in a standard f o k is said to be a twrrlevel im~lementation.

.

Example 3.8 showed the pmedure for obtaiaing the praduct-of-sums simplification when
the function is originally expressed in rhe sum-of-mintems canonical form. The pmcedw is
also valid when the function is originally expressed in the product-of-marterms canonical
form. Consider, for example. the n t h table that definer the function F in Table 3.2. In sum-
of-minterms form. this function is expressed as

F(x,y, r) = X(l. 3,4,6)

In pmduct-of-maxterms form, it is expmssed as

F(=,y. Z) = y o . 2.5.7)

ln other words, the 1's of the function represent the minterms and h e 0's represent the max-
t e r n . The map forthis function is shown in Fig. 3.16. One can stan simvlifying the function
by fmt marking the 1's for each minterm that the function is a 1. The remaining squares are

marked by 0's. If, instead, the product of maxtam is initially given, one can start marking U's
in those squms listed in the function; the ~maining squares we then marked by 1's. On& the
1's and O'a ace marked, the function can be simplified in either one of the standard forms. For
the sum of products, we combine the 1's to obrain

F = x'z + &a' , . L

For the produci of sums & comb& the 0's to obtain the heplified compleme~~& function -

which shows that the axclusive-OR function is the complement of the equivalence function
- {Section L61, W n g the complement of F', we obtain the simpwed funcdun in plwt-of-

, .
9- forhi: &'-.;;$;+ ;,. - ,< *, i:.., . - , -. ' , - -. -v-r,, , 4<:.,..,1 :'

- .

/, : , , : , ,., % ..+ -,:; ,, , : <:*a: . -- , -

- : . , c ,,:: F;,,*.,q :,.p-:.. :h - ;:,:', r n . 6 + - a ..-.,:.-:(,<&~*fi-\ ;,t:;j:A-Jn:*'."L...: :--.. A,!!v&p rz ,: 4 x ~ + ~ ') (x C ,) -,
,:' , ., .._ . . i .*

<<.\ ,<? ,..., ;, ,.,,, 8 , .. , '. - : : .:.: , ; , ? r , , ,

:& k t & a fn;l'dti& ~ ~ s ~ (i n @uctdf-sm form h$o thk mstp, use the compl~ment of the :;
W o n - t o fmd the- squares that afe to be marked by 0'0's. For- example, the W o n

, . .
,--., .,; - < F . . ' F = (A' + B' ;t C t) (B . + Dl ' . . - ;?.,.,-. '- ' 1

, . . r
.. .'.,.,,.,: : '-2..-: <!.<;, 9 . . ,
canbe entered into the map by &s(taking ifs complemegi, namelyZ ,

'

F' .= ABC + B'D' A

. A

and then marking 0's in the squares representing the of F'; he remaining squares ';
are m w k 4 with 1's.

3 . 6 DON'T-CARL CONDITIONS

The logical sum of the mintems associated \Kith a Boolean function specXes the conditions J.L

under which the function is equal to 1. Tke function is aqua1 to 0 for the rest of the m i n m .
This pair of conditions asgumes that dl the combinations of the valuea for the variables of tbe
function are valid, In practice, in sonie applications the function is not specifid for certain
combinations of the variabl~, As an example, the four-bit b i n q code for the decimrrl digits
.-has six combinations that are not used and consequently me consiclmd to be m@fied.

* ,, "F+YL ,.. .v*~+--,,~-zy,-. ,. -. - . <. . . , ,, , , ,.. .
;. - . .

Sectlon 3.6 Don't-Care Condltlons 87

Funcrions that have unspecified oulpurs for some input combinations are called iwomplctely
rpccifredfunctions. In most applications, we simply don't care what value is assumed by the
function for Ihe uns~eeified minterms. For this reason. it is customam to call the unsoecified
mmrerms of a funct~on don>-core rondittonr. These don'tsac conditions ran be used on a
map to pro\idc funhcr stmplrfirstton oi lhe Bwlean expression.

Adon'waremintermis acornbination of variables whoselagical value is not specified. Such
a minterm cannot be msrlted wilh a I in the map, because it would require that the function al-
ways k a l for such a combination. Likewise. ~uUinn a 0 on the s a w m u i n s the function . -
to 0. To distinguish the don't-care condtton from I'r and O'r, X is "red Thus, an X in-
s~de a square in the map lndicdter that u.e don't can uhelher the >aluc of 0 or 1 is asvpncd to
F for the particular mintem,

la choosing adjacent squares to simplify the function in a map, the don't-cm mintems
mav be assumed 10 be eilherO or I. When rim~lifvine the function. we can chwse to include
each don't-care minwrm with either the 1's or b e b's:depending on which combination gives
the simplest expression.

S i l i f y the Boolean function

F(w.x.y.z) E(I.3,7.11.15)

which has the don'tsare conditions

d(w,, x , y . 2) = E(O.2.5)

The minterms of F are the variable combinations that make the function qua1 to I. The
minterms of d are the don't-care mintem that may be assigned either 0 or 1. The map sim.
plification is shown in Fig. 3.17. The mintem of F are marked by I'E, those of dare marked

(a)F-): + w i '

FIGURE 3.17
Example with don't- conditrans

88 Chapter 3 GabdeveI Mhlrnkatbn

by X's, a d tbe mmhiug aqwms we fiUed with 0's. To get the simplified expression in sum-
of-pducSs fam, we must b h d e all five 1's in the map, but we may or may not include any
of ib X's, depeadmg oa ih way tbt fnaction is s@W. The term yz covers the four rninterms
in the third cdwm. The remaining minm ml, can be combined with rninterm mg to give
the three-literal term w'x'z. However, by h i d i a g one or two adjacent X's we can combine
four adjacent squares to give a two-literal term. In part (a) of the diagram, don't-care minterms
0 and 2 are included with the l's, mulling in the simpWed function

F = yz + w'x'

In part (b), don't-care rninterm 5 is included with the 1's. and the simplified function is now

F = yz + w'z

Either one of the preceding two expressions satisfies the conditions stated for this example.

The previous example has shown that the don't-care rainterms in the map are initially marked
with X's and are considered as being either 0 w 1. The choice between 0 and 1 is made de-
pending on the way the incompletely specified function is simplified. Once the choice is made,
the simplified function obtained will consist of a sum of rninterrns that includes those min~erms
which were initially unspecified and have been chosen to be included w i ~ the 1's. Consider
the two simplified expressions obtained in Example 3.9:

F(w, x, y, z) = yz + w'x' = Z(0, 1'2'3'7, 11, 15)

F(w, x, y, z) = yz + w l z = Z(1,3 ,5 ,7 ,11 ,15)

Both expressions include minterms 1,3,7 , 1 1, and 15 that make the function F equal to 1. The
don't-care minterms 0, 2, and 5 are treated differently in each expression. The first expression
includes minterms O and 2 with the 1's and leaves rninterm 5 with the 0's. The second expres-
sion includes minterm 5 with the 1's and leaves mintems 0 and 2 with the 0's. The two ex-
pressions represent two functions that are not algebraically equal. Both cover the speciiied
mintems of the function, but each covers different don't-care mintems. As far as the bcom-
pletely specified function is concerned, either expression is acceptable because the only dif-
ference is in the value of F for the don't-care mintem.

It is also possible to obtain a simplified product-of-sums expression for the function of
Fig. 3.17. In this case, the only way to combine the 0's is to include don't-care mintems 0
and 2 with the 0's to give a simplified complemented function:

Taking the complement of F' gives the simplified expression in product-of-sums form:

In this case, we include mintems 0 and 2 with the 0's and min@rrn 5 with the 1's.

Section 3.7 NAND and NOR lrnpkrnentation 89

3.7 NAND AND NOR IMPLEMENTATION

Didtal circuits am frequently cansvvcted with NANDorNOR gates rather than withAND and
OR gates. NAND and NOR gates are easier to fabricate with electronic camwnents and an
the basic gakr used in all IC digital Ionic families. Because of the ~mminence of NAND and
NOR eat& in the desien of di~ltal cireiits. rules and omcedurer been devela~ed for the
conversion fmm Bwican funitions given in terms af AND. OR. and NOT into iquivalmt
NAND and NOR logic diagrams.

NAND Clrcults

The NAND gate is said to be s universal pate because anv digital svrtem can be imdemented . " , . ~ ~-

wth it To E h o ~ that any Boulcan fun~"& can be lmplcmented ~ n t h NAND gaw\. uc n u d
only show tha the logical opnuionr ofAND. OR andcompicmnt can k obmned unh N . W
gates alone Thlr s udgd shown In Fig 3 18 The cunbpkeca operation 8 % obtatned fn,m a unc-
input NANDgate that behaves exactly iike an inverter. The~NDoperation requires taro NAND
gates. The fmt produces the NAND operation and the seeondinvens the logical sense ofthe sig-
nal. The ORopcrationir achieved thmugh aNAND gate with additional inverters in each input.

A convenient way to implement a Boolean function with NAND gates is to obtain the rim-
plif~edBmlean function in terms of Bwlean operaton and then convertthe function to NAND
logic. The conversion of an algebraic expression from AND, OR, and complement to NAND
can be done by simple circuit manipulation fechniques that change AND-OR diagrams to
NAND diagrams.

To far~htate the ron\r.na,n s, NANI) logic. 11 IS conven#<nt s, dcfinz an ~lrernatlvr graph~c
symbol farthe gate.Twoequivalmt graphic symbols forthe VASDgate r show m Fig 3 19

AND :*V

mcua 3.18
L q l k opratims with NAND gates

(a) AND.mv.n (b) I n v s n . 0 ~

RCLN 3.19
Two graphic symbols fn the NAND gate

~ ~ ~ ~ ~ ~ ~ y a n d r o n s i s t s o f a n A N D ~ s y m b o l f d - i

-by a d ckkwgadrn-htibtm refex& to as a bubble, Alternatively, it is p s i i l e to
~ ~ M ~ ~ a ~ ~ @ t s a t i s ~ b y a b u b b l e i n e r e c b i n p u t The
inv&ta-1 for the NAND gate foIlom lkMmgds tbemm and the oonventim that the
n@m i&atm h t w cmq- T h two gmp& symbols' l.epremtatiw6 are use-
ful h the d y s i s and design of NAND &cub, - both symbols are rnixed in the same
~ t h e c i r c l r i t i s s a i d t o ~ i n ~ ~ . .

* 1.'. .

. . The implementation of Boolean functions with NAND gates requires that ihe functions be in
- sum-of-products form. To see the relationship between a sumsf-product expression and its

equivalent NAND implementation, consider the logic diagrams drawn in Fig. 3.20. All three
I.,. diagrams are equivalent and impIernent the function

I - # 8 . . 4 .

1 : . F = A B + C D ,r, .
- .- . . - -

The function is implemented in (a) with AND and OR gates."~ (b), the AND gate.~ are lo
placed by NAND gates and the OR gate is replaced by a NAND gate with an OR-invert graphic
symbd. Remember that a bubble denotes complementation and two bubbles along th same
line represent double complementation, so both can be removed. Removing the bubbles on the
gates of @) produces the circuit of (a). Therefore, the two diagrams implement the same func-
tion and are equivalent.

In Fig. 3.20(c), the output NAND gate is redrawn with the AND-invert graphic symbol.
In drawing NAND logic diagrams, the circuit shown in either (b) or (c) is acceptable. The

+

.. I - .I ..- , . . , . -
I - I J

Section 3.7 NAND and NOR Implementation 91

one in (b) is in mired notation and represents a more direct relationship to the Boolean
expression it implements. The NAM) implementation in Fig. 3.2Wc) can bc verified alge-
braically. The function it imdcments can easily be convened to sum-af-products form by
~ e ~ o r g a n ' r theorem:

Implement the following Baalea function with NAND gates:

F (X , Y . z) = (I . 2 . 3 . 4 . 5 . 7)

The fmt step is to simplify the function into sum-of-products farm. This is done by means of
the map of Fig. 3.21(a). from which Ule simplified function is obfained:

F = xy' + x'y + r

The tw+level NANDimplemenmtimis shown in Pig. 3.2lm) inmixed notation. Note thatinp.t
z must have a one-input NAND gate Inn inverter) to compensate for the bubble in the second-
level gate. Aa alternative way of drawing the logic diagram is @en in Fig. 3.21(c). Here, all
the NAND gates are drawn with the same graphic symbol. Thc inverter with input z ha been
removed. but the input variable is complemented and denoted by r'.

RGURE 311
Solution to hunple 3.10

I - 11 1 The &scribed hi the example indicates that a Boolean function can be
implmmttd with two levels of NAND pa. The procedure for obtaining the logic diagram '

h a Boolean function. is as follows:

1, Simplify the function and express it in sum-of-products form.
2. Draw a NAND gate for each product term of the expression that has at least two literals.

The inputs to each NAND gate are the literals of the t am. This procedure produces a
group of first-level gates.

3. Draw a single gate using the AND-invert or the invert-OR graphic symbol in the second
level, with inputs coming from outputs of first-level gates.

4. A term with a single literal requires an inverter in the f i s t level. However, if the single literal 1 .I
is complemented, it can be connected directly to an input of the second-level NAND gate.

The standard form of expressing Boolean functions results in a two-level iinplementatioa.
There are occasions, however, when the design of digital systems results ia gating structures
with three or more levels. The most common pmedure in the design of multilevel circuits is
to express the B wlean function in twms of AND, OR, and complement operations. The func-
tion can then be implemented with AND and OR gates. After that, if necessary, it can IE con-
verted into an all-NAND circuit. Consider, for example, the Bwlem function

F = A(CD + 3) + BC'

Although it is possible to remove the parentheses and reduce tbe expression into a standard sum-
of-products form, we choose to implement it as a multilevel circuit for illustration. The
AND-OR implementation is shown in Fig. 3.22(a). There are four levels of gating in the cir-
cuit, The fxst level has two AND gates. The second level has an OR gate followed by an AND
gate in the third level and an OR gate in the fourth level. A logic diagram with a pattern of d-
temating levels of AND and OR gates can easily be converted into a NAND circuit with the
use of mixed notation, shown in Fig. 3.22(b). The procedure is to change every AND gate to
an AND-invert graphic symbol and every OR gate to an invert-OR graphic symbol. The NAND
circuit performs the same logic as the AND-OR diagram as long as there are two bubbles along
the same line. The bubble associated with input B causes an extra complementation, which
must be compensated for by changing the input literal to B'.

The general procedure for converting a multilevel AND-OR diagram into an all-NAND di-
agram using mixed natation is as follows:

1. Convert all AND gates to NAND gates with AND-invert graphic aymhls.
2, Convert all OR gates to NAND gates with invert-OR graphic symbols.
3. Check dl the bubbles in the diagram, For every bubble that is not compensated by an-

other s m d circle along the same line, insert an inverter (a one-input NAND gate) or
complement the input Literal.

As another example, consider the multilevel Boolean function

F = (AB' + A'B)(C + D')

(b) NAND gates

At= 3.22
lrnplementlng F = A(CD + I) + BC'

ThcAND4R imolementation of lhis fmction ls shown inFie. 3.23(al with thrse levels of eat- - . . "
ing. The conversion to NAND with mxcd notation ir prcrrnvd in pan (b) of the diagram. The
taro additional bubbles ssroctated with inpuu Cand D' cause these two lirnalr to be mmple-
menfed to C' and D. The bubble in the &t~ut NAND gate com~lemenu the oumut value. so -
we need to insen an inverter gate at the output in order to complement !he signal again and get
the original value back.

NOR Implementation

The NOR o p t i o n is the dual of theNAND opemtion. Thersfors, a l l pmxdurss ad rules fw
NOR loeic ax the duds of the cornscandine nocedores and rules &vcload for NAND lopio.
The NO^ gae is another univmal ;ate thayean be used to implement &y Boolean function.
The implementation of the complement. OR, and AI\D opalions with NOR gales is shown
in Fig. 3.24. The complement operation is obtained fmm s me-input NOR gate that behaves
e w i v like an invenk. The ~ ~ - o o n a t i o n m u i m taro NOR nater. and the AND owmtim is
o b w i d ulth a NOR gale that h i inverters ib each mpul

"

The two grapluc symbols for the m~xed notauon are shown in Fig. 3 25. The OR-lnvm
symbol definer the NOR opmtim as an OR followed by a ewnplnnea. The invm-AND
rimbol complements each'mput and then performs an AND o&rstion. The two symbols
desngnate the same NOR operauon and are logtcally ident~cal because of DcMorgan's

(b) NAND gates

FIGURE 3.23
lmplementlng F = (AB' + AIB) (C + 0')

AND (x' + y')' = xy

Y

FIGURE 3.24
Logk operations with NOR gates . -

F l W 3.25
Two graphic syrnbok for the NOR gate

(b) Invert-AND

Sectlon 3.7 NAND and NOR ImplemmtaUon 95

A nvo-level implementation with NOR gates requires that the function be simplified into
productof-sums fom. Remembcr that the simplified prcduct-of-sums e x p s i o n is obtained
horn the map by combining the 0's and complement in^. A prcdwt-of-sums exmessionis im-
plemented w i i a first levi of OR gates that prcduce-the ium terms followed by a second-
level AND gate to pmduce the product. lbe vansfomation from the OR-AND diagram to a
NOR diagram is achieved by changing Ulc OR gates to NOR gates with OR-inven graphic
symbols ad the AND gate to a NOR gate with an invert-AND graphic symbol. A single literal
term going into the second-level gate must bc complemented. Fig. 3.26 shows the NOR im-
plementation of a function expressed as a pmdun of sums:

F = (A + B)(C + D)E

Tk OR-ANDpnem can easily bc detected by the removal of the bubbler along the same line.
Variable Eis complemented to campsate far the rhird bubble a t h e input of the second-level
m e . ----.

lbe pmeedwr for convening a multilevel W R diagram to an &-NOR diagram is
similar m the me presented for NAND gates. Forthe NOR case. we must convcn each OR gate
to an OR-invm svmbol and each AND pate to an inven-AND svmbol. Anv bubble that Is not
compensated by Lother bubble along the Eame line needs an inverter. or th; complementation
of the inpnt literal.

The vansformation of the A W R diagram of Fig. 3.23(s) into a NOR diagram is shown
io Fig. 3.27. The Bwlean function for tbis circuit is

F = (AB' + A'B)(C + D')

"

FIGURE 3.26
lmplcmmtlq F = (A + B)(C + O)t

FIGURE 3.27
IrnpknUng F = (AS' + A'B)(C + W) d h NOR gates

-.
;: L ; ' 5

, I; . % Chapter3 M f d m W o n
+*

I ' I ' b e e@v&ht m R diagram can be recognized from the NOR diagram by removing all
:\I
,I! . the b W h . To umrpmk for the bubbles in four inputs, it is necessary to complement the
I ' -inputiitdR ' ? # . -

0 . - r11 "I

3 . 8 OTHER TWO-LEVEL IMPLEMENTATIONS

The types of gates mmt often f w d in integrated circuits are NAND and NOR gates. For this
mson, NAND and NOR logic implemntadons are the most important from a practical point
of view. Some (but not all) NAND or NOR gates allow the possibility of a wire connection be-
tween the outputs of two gates to provide a specific logic function. This type of logic is cdled
wired logic. For example, open-collectPr TIZ NAND gates, when tied together, perform wired-
AND logic. (The open-collector TTL gate is shown in Chapter 10, Fig. 10.11 .) The wired-
AND logic performed with two NAND gates is depicted in Fig. 3.28(a). The AND gate is
drawn with the Lines going through the center of the gate to distinguish it from a mvent iod
gate. The wired-AND gate is not a physical gate, but only a symbol to designate the function
obtained h m the indicated wired connection. The logic function implemented by the circuit
of Fig. 3.28(a) is

F = (AB)'-*.(CD)' = (A B + CD)' = (A' t B')(C' + D')
and is called an ANWOR-INVERT function.

Similarly, the NOR outputs of ECL gates (see Figure 10.17) can be tied together to perform
a wired-OR function. The logic function implemented by the circuit of Fig. 3.28@) is

F = (A + B)' + (C + D)' = [(A + B)(C + D)]'

and is called an OR-AND-INVERT fmctidn. ., .

A wired-logic gate does not produce a physicd second-level gate, since it is just a wire con-
nection. Nevertheless, for discussion purposes, we will consider the circuits of Fig. 3.28 as
two-level implementations. The fist level consists of NAND (or NOR) gates and the second
level has a single AND (or OR) gate. The wired connection in the graphic symbol will be omit-
ted in ~ubsequent discussions.

(a) Wmd-AND in open-wBctor
TTL NAND gate*.

(b) Wad-OR in ECL stes

[OR-i4NwrwVERT)

F- [(A + 8) (C+ Dl]'

FIGU.W 3 .a
Wred hglc
(a) Wld-AND logk with two NAHD gates
(h) WlmddR In emhter-coapl@d logic (ECL) B B M

SecUon 3.8 Other Two-Level lmplementatlons 97

Nondylcmrate Forms

It urll k inruucu\c from a thcomucal pornt of \leu to r i d out hau man) two-lesel comb,-
muons of gam am p ~ ~ ~ h l e We conrldn tow t)pe+ ui gate\ AND. OR. NAND. and NOR
If uc asrhgn one type of gate far the Rrst level and one typc far the second level, we find that
them are 16 &bk combinations of wo-kvel forms. he same tyDe of gatc can be in the fm1
and s a d kvels, as in ~NAND-NAND implunentation.) Eight ofrhese&&ations are said
to be degencrare forms because they degenerate to a single operation. This can be Kcn from
a circuit with AND gates in the fmt level and an AND gate in the second level. The ouQut of
tbeheuit is mcnly the AND functionaf all input vatiables. The remaining eight mndegcnemte
forms produce an implementation in mm-af-prcducb form or product-af-rum form The eight
nondegenmte forms are as fallows:

A N W R OR-AND
NANDNAND NOR-NOR
NOR-R NANWAND
OR-NAND AND-NOR

The Rlnt gate ltrted in each of the forms constiruter a fmt level in the ~mplementaPon. Tne uc.
ond gate lt\ud is a ungle garr p l w d i n k w n d level. Nor< that any w o forms hrtedonthe
same Line are duals of each other.

The ANIYIR and OR-AND forms are the basic two-level forms discusred in Section 3.4.
The NAND-NAND andNOR-NOR foms were prescntedin Section 3.6. The remaining four
forms m'c investigated in h i s section.

AND6R4NWRT ImplementatIan

The two form N A m A N D and AND-NOR are muivalent and can be mated together. Both
p d o m the AND-OR-INVERT function, as shown in Fig. 3.29. The AND-NOR form re-
sembles the -R fann, but with an inversion done by the bubble in the wQut of the
NOR gate. It implwnents the function

F = (A8 + CD + E)'

!+ : A

B

C

D
F F

D D

E E E

(a) AND-NOR lb) AND-NOR (s) NAND-AND

By using the alternative graphic symbol for the NOR gate, we obtain the diagram of
Fig. 3.29m). Note that the &@e variable E is not complemented, because the only change
made is in the graphic symbol of the NOR gate. Now we move the bubble from the input ter-
mind of the second-level gate to the output t e m h d a of the first-level gates. An inverter is need-
ed for the single variable in order to compensate for the bubble, Alternatively, the inverter can
be removed, provided that input E is complemented. The circuit of Fig. 3.29(c) is a
NANWAND form and was shown in Fig. 3.28 to implement the AND-OR-INVERT function.
An AND-OR implementation requires m expression in sum-of-products form. The

m R - I N V E R T i m p ~ m e ~ o n is similar, except for the inversion. Therefore, if the comp-
l e m t of the function is simpMed into sum4podwts form ('by combining the 0's in the map),
it will be possible to implement F' with the AND-OR part of the fundon. When F' passes
through the always present output inversion (the INVERT part], it will generate the output F
of the function. An example for the AND4R-INVERT implementation will be shown
subsequently.

The OR-NAND and NDR-OR forms perform the OR--INVERT function, as shown in
Fig. 3.30. The OR-NAND form resembles the OR-AND form, except for the inversion done
by the bubbIe in the NAND gate. It implements the function

F = [(A + B)(C + D)E]'

By using the dtemative graphic symbol for the NAND gate, we obtain the diagram of
Fig. 3.30(b). The circuit in (c) is obtained by moving the small circles from the inputs of the
second-level gate to the outputs of the first-level gats The circuit of Fig. 3.w~) is a NOR4R
form and was shown in Fig. 3.28 to implement the OR--INVERT function.

The OR--INVERT implementation requires an expression in product-af-sums form.
If the complement of the function is simplified into that form, we can implement F' with the
OR-AND part of the function. When F ' passes tbrough the INVERT part, we &ah the cmn-
plement of F' , or F, in the output.

(a) OR-NAND 0) OR-NAND (c) N O R 4 R

W o n 3.8 Other Two-Lml Implemsntltlons 99

Implements *@@ To Get
th. P an Ompn

Into

AND-NOR NAND-AND ANDOR-INERT Sum.of-products
form by combining
O's in the w. F

OR-NAND NOR-R OR-ANlLlNWm Roduet-of-sum.
farm by cornbinins
I'n in the map mi

F

*Form lb) require8 aa h w c r for a single U l e d mm.

Tabular Summary and Example
Table 3.3 summarizes the procedwes for implementing a Boolean luaction in my one of the
four 2-level forms. Because of the INTERTpan in each case. it is convenienl to use the sim-
plification of F' (the complement) of the function. When F' is implemented in one of these
forms. we obtain b e complement of the hc t i on in the ANPORor OR-AND form. The fow
2-level f m s inven Ulis function. giving an output r h r is the complement of F'. This is ihc
n d output F.

lmplemcnt the funulion of Fig 3.3lta) uith the fow 2-levcl forms Listed in Table 3.3.
The complement of the function is slmpl~fied lnta sum-af.pmducts fonn b) combtning the O's
in the map:

The n d wtpvl for this fmclion can k expressed 83

F = (x'r + xy' + r) '

whichis in the ANPOR-WVERTfm. The AND-NOR &NAND-AND implemenls*ionr
arc shown in Fig. 3.31(b). Note that a one-input NAND, or inverter, gate is needed in the
NAND-AND implementation. but not in the AND-NOR m e . The invena can be m v e d
if we apply the input variable r' iowead ofz

The OR--INVERT forma require a simplified exprrssion of the complement of the
function in pmdm-of-wunr form. To dmh this expession, we fint mmbine th 1's i n k map:

F = r'y'i' + xyz'

z
(a) M s p M s p t i n n in sum of products

OR-NAND

z+
NAND-AND

@) F = (x'y + xy' + 2)'

NOR-OR

(c) F = [(I + y + 2) (x' + y ' + z)]'
FlGUIlE 3.31
Other h - f e v e l Irnplwnentatiom

Then we take the complement of the function:

F' = (x + y -t z) (x l + y' t z)
The normal output F can now be expressed in the form

F = [(x + y + z) (x ' f y' + z)]"
which is the OR--INVERT form. From this expression, we can implement the function
in the OR-NAND and NOR-OR forms, as shown in Fig. 3.3 1 (c).

H

Sectton 3.9 ExduriwOR Functlon 101

3.9 EXCLUSIVE-OR FUNCTION

The exclusive-OR (XOR), denoted by the symbol @ , *a logical operation that p f o m the
fallowing Boolean operation:

x 8) y = xy' + x'y

The cxclu+ive.OR is ulual lo I if onl) r i s equal to I or donly , is uqdal to I (i .~ . . 1 and y dif-
fer in value), but na u hen balh arc equal to I or uhcn bath ate equal to 0 The rrclunvc-
NOR. also Lnuun a, quiralence, perfimn, the fullouinp Boolean operaoon:

(x e y) ' = xy + x'y'

The exclusive-NOR is equal to I if bathx and y are equal to 1 or if both are equal to 0. The ex-
clusive-NOR can be shown to be the complement of the exclusive-OR by means of a truth
table or by algebraic manipulation:

(xC3.v)' = (xy' + x'y)' = (x' + J)(S +?I.') = xy + x'y'

The following identities apply to the exclusive-OR operation:

x e o = x

~ r n l = X'

x e x = 0

X ~ X ' = 1

x e y s = x ' e y = (x e y) '

Any af these identities can be proven with a rmth table or by replacing the @ operation by its
equivalent Bmlean expression. Also. it can be shown that the exclusive-OR operatian is both
commutative and associative; that is,

A @ B = B @ A

and

(A e B) e C = A @ (B @ C) = A @ B @ C

This means that the two inputs to an exclusive-OR gate can be interchanged withwt affecting
I& o p t i o n . It also meam that we can evaluate a tlnec-variable exclurive4R operation in any
order, and for this ream, t h m a m a m variables can be exptessed without parrnthww. This
would imply the possibility of using exclusive-ORgates with three or more inputs. However,
multiple-input exclusive-OR gates are difficult to fabricate with hardware. In fact, even atwo-
input function is usually constructed with other types of gates. A hvo-input exclusive-OR func-
tion is consmcted with convenlionsl gates using two inverters, two AND gates, and anORgate,
as shown in'Fig. 3.32(a). Figure 3.32(b) shows the implementation of the exclusive-OR with
four NAND gates. The fmt NAND gate pedorms Ute operation (xy)' = (x' + y'). The other
two-level NAND circuit prcduces the sum of products of its inputs:

(x' + y')x + (2' + y')y = *y' + x'y = r e y

(a) With W R - N O T gates

@) With NAND gat=

Only a limited number of Bwlean functions can lx expressed in terms of exclusive-OR
operations. Nevertheless, tbh f k d o n emerges quite often during the design of digital sys-
tems. It is particularly useful in adthmetic o p a h m and mw detedon and d o n circuits.

Odd Function

The exclusive-OR operation with three or more variables can be converted into an ordinary
Boolean function by replacing the $ symbol with its equivalent Boolean expression. In par-
ticular, the three-variable case can be converted to a Boolean expression as follows:

A @ B G3 C = (AB' t AfB)C' + (A B + A'B')C

= AB'C' t A'BC' + ABC + A'B'C
= 2(1 ,2 ,4 ,7)

The Boolean expression clearly indicafes hat the *variable exclusive-OR function is equal
to 1 if only one variable is equal to 1 or if all thee variables are equal to 1. Contrary to the two-
variable case, in which only one variable must be equal to 1, in the case of three or more vari-
ables the requirement is that an odd number of variables k equal to I . As a consequence, the
multiple-variable exclusive-OR operation is defined as an odd function,

The Bmlean function derived fiom the three-variable exclusiveOR o p d m is expressad
as the logical sum of four minterms whose binary numerical values are 001,010, 100, and
11 1. Each of these binary numbers has an odd number of 1's. The remaining four mintemis

Section 3.9 ExclusMR Function 103

not included in the function arc WO, 011.101. and 110, and hey have an even number of 1's
in their binary numerical values. In general, an n-variable exclusive-OR function is an odd
function defmed as the logical sum of the 2"R mintems whose binary numerical valuer
have an odd number of 1's.

Tne defnition of an odd function canbe clarified by ploning it in amp. Figure 3.33(a) shows
the map for the three-variable exclusive-OR function. The four mintems of the function are a
unit distance man fmm each other. The odd function is identified from the four mintem
whose binarv ;dues have an odd number of 1's. The comalemcnt of an odd function i s an .~~~~~~~ ~~ ~~ ~ ~ - - ~~~~~~~~~ ~ ~-

eren funct~oo. As shown in Fig. 333(b). h e three-vanable even functnon is equal to I uhcn
ane\m number of its \.ariabler is equal to I (tncluding the condn8on that noneof the variables
is qua l to I).

Tbe thrre-input odd function is implemented by m c m of wbinput exclusive-OR gates, as
shown in Fig. 3.34(a). The complement of an odd function is obtained by replacing the output
gate with an exclusive-NOR gate, as shown in Fig. 3,34(b).

Consider now the four-variable exclusive-OR operation. By algebraic manipulation, we can
obtain the sum of mintems for this function:

a eaeceo = (a e ' + A ' B) ~ (c D ' + C'D)
= (AB' + A'B)(CD + C'D') + (AB + A'B')(CD' + C'D)
=~(1 ,2 .4 .7 .8 ,11 ,13 ,14)

There are I6 mintems forafour-variable Bmleanfunctim. Halfof the minterms have b i i
nvmcrical values with an odd number of 1's: the other half of Ule mintems have binary numerical

(a)OddhurrtionF=AfBBBC (b) Even luocbon F = (A @ BfB C)'

FIGURE 3.33
hlro for a thrrcmiabk erdushre-OR tunctlon

c 2
(0) 3-input cddfunction

RCURE 3.34
Logic diagnm d odd and m n tunRions

c-
(b) 3-input cvm runrtlon

-
00 M - 1 1 l o . , ' 1

I , . ,
& 4 % "5

00 1 1

"4 m5 =l %
01 1 1 :d ' L .

"11 "'la "% mnr,

1 1

Q mp m,, % "mt'p. '
10 1 1

D 2 : * - - -.:I+
(a) Odd function F = A $ B @ C O D i - '

D . 3 .

@) Even function F = (A O B C@ Dl' mzi
mw 3.3s
M q for a four-vdle e x d u M R frmtkn

values with an even number of 1 's. In plo#ing b e fPoction in the map, the brnary numerid value -.
for a mintem is determined from the TOW and mhm numkrs of the square that represents the ,

mintem. The map of Fig. 3.3S(a) is a plot of tbe four-variable exclusive-OR function. This is .'
an odd function because the binary value8 of dl b &terms have an odd n u d m of 1 's. The
complmmt of an odd function is an even function. As shown in Fig. 3.35(b), the four-variable
even function is equal to 1 when an even nnmber of its variables is equal to I .

P&y -m anal QlecWng
- .

ExcJusive-OR functions are very useful in sy~tems requiring error d e w o n and correction .. :
codes. As discussed in Section 1 -7, a parity bit is used for the purpose of detecting errors dur- L-

ing the transmission of binary information, A parity bit is an extra bit included with a binary' ,;
nmsage to make the number of I 's either odd or evea The message, including the parity bit, ;''
is transmitted and then checked at the receiving end for errors, An error is detected if the -:
checked parity does not correspond with the one transmitt& The circuit t b t generatRf the pw- ;.:
ity bit in the bansmitter is called a parity genembor. The circuit that checks the parity in the
receiver is called a par& checker;

As an example, consider a three-bit message to be transmitted together with an even parity
bit. Table 3.4 shows the truth table for the parity generator. The three bits-x, y, and z-
constitute the message and are the inputs to the circuit. The parity bit P is the mQut. For even
parity, the bit P must be generated to make the total number of 1's (including P) even. From
the truth table, we see that P constitutes an odd function because it is equal to 1 for aose
mintems whose numerical values have an odd number of 1's. Therefore, P cm be expressed -
as a threevariable exclusive-OR function: ' '

- .. ' ,' 7

P = x $ y $ z

The logic diagram for the parity generator is shown in Fig. 3.36(a).

Section 3.9 Exduslvc-OR Function 105

Table 3.4
Eurrr*(;andor Trvm T0bk

(a) 3-bit even parity ~cncrator (b) e b ~ t even parity checker

Flcm 3.36
Logk dbgm of a parity generator a d rheckn

The three bits in the message, together with the pMty bit. arc transmined to their dcstina-
tion. when they me applied to apdty-checkcrcircvit to check for pwsibls m r s in the m s -
mission. Since he infarmation was oaosmined with even miN, he four biu neeived must have
an even number of 1's. An e m r occun during the vrnrkission if the four bits received have -
an add number of I'r, indicattng that one bit ha. changed in valueduiq Vdmmirsian.The m-
put of the padry checker, denoted by C. u lli be equal to i if an cmncccurr-tha is, ifthe folur
bits received have an oddnumbsrof 1's. Table 3.5 is the n t h table for the even-padtychccker.
Fmm it, we see that he funetion Ceonsiws of the aehl miorams with b h w numoiul val-
ues having an odd number of 1's. The table coms&ds to the map of id. 3.35(~), which
re-Is an add function. The parity checker can be implemted with exclusive-OR gstcs:

C = x (B y @ l (B P

The logic diamam ofthc ~ari tv checker is shown in Fin. 3.36Ib).
It iskunh-&ting lhat the gcocworuan be i m p i h l c d w i t h thc c i r c u ~ t o f ~ ~ . 3.36(b)

iflhe input P ir m n l e d to logic0 and theoutput is &ed with P . W is becaw z (BO = 1.
causing the value ofzto pass duough the p unchanged. &advantage of this snategyis lhat
the same circuit can be used for bath parity generation and checking.

Table 3.5
E w ~ - w - C k k t T d T&

Faur B h s Parlty Error
Recch.ed Check

It Is obvious fMm the foregoing example that parity generation and checking circuits always
have an output function that includes half of the mjnterms whose numerical v f ues have either
m odd or even number of 1'5;. ks a consequence, they can be implemented with exclusive-OR
gates. A function with an even number of 1's is the complement of an odd function. It is im-
plemented with exclusive-OR gales, except that the gate associated with the output must be an
exclusive-NOR to provide the req* complementation.

3.10 HARDWARE DESCRIPTION LANGUAGE

Manual methods for designing logic cirmits are feasible only when the circuit is small. For any-
thing else (i.e., a practical circuit), designers use computer-based design tools. Coupled with
a correct-by-construction meth&1ogy, computer-based design tools leverage the creativity
and effort of a designer and reduce the risk of producing a flawed design. Prototype integrated
circuits are too expensive and t h e consuming to build, so all modern design twls rely on a
hardware description language to describe, design, and test a circuit in software before it is
ever manufactured,

A hurdwam description language (HDL) is a computer-based language that descrik the
hardware of digital systems in a textual form. It resembles an ordinary computer programming
language, such as C, but is specifically oriented to describing hardware structures and the
behavior of logic circuits. It can be used to represent logic diagrams, truth tables, Boolean

Section 3.10 Hardware Lkscription Language 107

expressions, and complex abswactions ofthe behavior of adigital system. One way to view an
HDL is to observe that it describes a mlationshi~ between sinnalr that arc the in~ut r to s cir-
cult and the s~gnals that ate outputsofthec~rcull'~or example. an HD~dercnpooiof AND
gatedescnber how the lo@c \due ofthe gate's output IS detcrmtncd by the loglc values oflts
inputs.

As a doeumenrarion lanwaee. an HDL is used to revresent and document dieilal svstsms - .
In a form that can be read b; bbth humans and computirs and is suitable as an excbange lan-
guage between designers. The language contmt can be stored, remcved. emled, and uanrrmt.
ted easily and processed by computer roflware in an efftcient manner.

HDLs are used in several major sBps in the design flow of an integrated circuit: design
enuy, functional simulation or verification. logic synthesis, timing verification, and fault
simulation.

Dcrign entry creates an HDL-baxd description of the functionality that is to be imple-
mented in hardware. Depending on the HDL, the description can be in a vnriely of forms:
Bmlean logic equations truth tables, a netlist of intercomectedgates. or an abshact behavioral
madel. The HDL model mav also rearerent a aanition of a Lareer circuit into smaUm intm- "
comccted and interacting functional units.

Logic sirnulorion displays h e behavior of a digital system lhmugh the use of a compuw A
simulator interprets the HDL description and either producer readible output, such asa time.
ordered seauence of inout and oumut sirmal valucs. ordisolavs waveforms of the s i d s . The . - . , "
rlmulation of a emult predicts how the MWBTU W I I I ~ C ~ U Y E hefun 11 i. actually fahriunted.
S~mulalion d l o w the detectton of f~nctional mm in a design uithout hating m phydeally
mate and operate the circuit. E m s that are detected during a simulation can k corrected by
modifvion the aooro~riate HDL statements. The stimulus (i.e.. the lodc valves of the inouts to . - .. . -
ackruitr that vrtr the funcltonality ofthedesign iscalleda (err bench 'lhur. torimulate adrg-
~lsl system. the des~gn ir firit dewnbed in an HDL and then venfied by h~mulating the dcrign
and chcrktng it with a t o t bench, wh~ch IS also written in the HDL. An altemal!ve and m m
complex a p h a c b rcUcs on formal mathematical methods to pmve tha a circuit is function-
all" correct. We will focus exclurivclv on simulation.

Log,< rwrherir is the proccrr ofdrnvrnp a h t of physical components and lheu intercon-
nectiuos (called a nrrldrrr frum the mudel of a digital ,)stem k r c n b d in an iDL. Tnc ncrlist
can be used to fabricate anintegrated circuit orto lay out a prinfed circuit board with the hard-
ware countemam of the gates in the list. Loeic svnthesir is similar to comniline a nmeram in - - , .
aeoavenuonal hagh-le>cl language The difference is ~hat, andead of prcducing an abject cod+
loge r)ntheots prcduecl a database dercnbrng the elements and s m c l m of aclreuu The data-
base specifies haw to fabricsteaphysical integrstedcirmit that implements in silicon the func-
tionality described by statements made in an HDL. Logic synthesis is based on formal exan
pmcedures that implement digital circuits and addresses that panaf adigitaldcsign whichcan
be automated with computer safiwsn. The design of loday's I-, complex circuits is made
possible by logic synthesis soitware.

Rnting verijie(~rion confirms that the fabricated integrated circuit will operate at a spwi-
fied soeed. Because each logic eats in a circuit has a orooazation delav. a s i m l transition at " " . . - , -
the input uf a c~ruuit cannot tmmedtately cau* a change in the logic valus nfthe tnttput of a
circuat. Ropaguon delays ulumatcly limn1 the speed at whach a circuit ran operate. T~rmng

108 Chapter 3 Gate-Level Minimbtlon

verification checks e d signal @to verQ that it is not compromised by propagation delay.
This step is done after logic s p t b h m e s the actual devices that will compose a circuit
and More the circuit is re lad for w o n .

In VLSI circuit design, f d t s h u h f h compares the behavior of an ideal circuit with the
behavior of a circuit that contains a -6-induced flaw. Dust and other particulates in the
atmosphere of the clem rwm can cause a circuit to be fabricated with a fault. A circuit with
a fault will not exhibit the same fandmdily as a fault-free circuit. Fault simulation is used
to identify input stimuli that can be used to reveal the difference between the faulty circuit and
the fault-free circuit. These test p t t e m s w i l l be used to test fabricated devices to ensure that
only good devices are shipped to the customm Test generation and fault simulation may occur
at different steps in the design process, bnt they are always done before production in order
to avoid the disaster of producing a circuit whose internal logic cannot be tested.

Companies that &sign integrated c h i t s use proprietary and publc HDLs. In the public
domain, there are two standard HDLs that are supported by the IEEE: VHDL and Verilog.
VHDL is a Department of Defenemandakd language. (The V in VHDL stands for the first
letter in VHSIC, an acronym for very high speed integrated circuit.) Verilog began as a
proprietary HDL of Cadence Design Systems, but Cadence transferred c~ntrol of Verilog to
a consortium of companies and universities known as Open Verilog International (OW) as a
step leading to its adoption as an IEEE standard. VHIILis more difficult to learn than Verilog.
Because Verilog is an easier language than VHDL to describe, learn, and use, we have eho-
sen it for this book. However, the VeriIog HDL descriptions listed throughout the book rn not
just about Verilog, but also serve to intdnce a design methodology based on the concept of
computer-aided modeling of digital systems by means of a typical hardware description
language. Our emphasis will be on the modeling, verification, and synthesis (both manual
and automated) of Verilog models of circuits having specified behavior. The Verilog HDL
was initidly approved as a standard HOL in 1995; revised and enhanced versions of the Ian-
guage were approved in 2001 and 2005. We will address only those features of Verilog,
including the latest standard, that support our discussion of HDL-based design methodology
for integrated circuits.

Module Declaration

The lansage reference manual for the Verilog HDL presents a Byntax that describes preckly
the constructs hat can be used in the language. In particular, a Verilog model is composed
of text using keywords, of which there are about 100. Keywords are predefined lowercase
identifiers that define the language constructs. Examples of keywords are module, end.
module, input, output, wire, and, or, and not. For clarity, keywords will be displayed in
boldface in the text in al l examples of code and wherever it is appropriate to call attention
to their use. Any text between two forward slashes I//) and the end of the line is interpreted
as a comment and will have no effect on a simulation using the model. Multiline comments
begin with /* and terminate with *I. Blank spaces are ignored, but they may not appear with-
in the text of a keyword, a user-specified identifier, an operator, or the representation of a num-
ber. VeriIog is case sensitive, which means that uppercase and lowercase letters are
distinguishable (e.g., not is not the same as NOT), The term module refers to the text encIosed

Section 3.10 Hardware Description Language 109

RCm 3.37
Omdl to demonstrate an HDL

by the keyword pair module . . . endmodule. Amodule is the fundamental descriptive unit
in theVeriloglanguage. It isdeclared by Ihe keywordmodule andmust always be t d a t e d
bv the keyword endmodule.
' ~ombkatiord lo@c can be dernhed by a vhematlc wnnecbon of gates. b) a ut of Bmlean

equauons. or by a mth table Each t l p of dernptron can bc developed m Venlog We will
demonsmate each style, bepinning with a simple example of aVe&g gate-level description to . .
illustrate some as~ei ts of the lankaxe.

T h e ~ ~ ~ d e w h ~ t i o n o f the&wtof F I ~ . 3.37 irchaunin HDl.Fmple 3.1.The fimt lineof
ur t u a wmmrnr i o p o d) pmsidtng uwful mfcm&on rothc W. The %codhe begw w h
thc keyxordmodvle and suns thc dslaraoon (de*tion~af the module: the l e t h e wmplevs
lhe dslaraIion with the keywonl endmodule. The keyword moduleis follmved by a name anda
lkl of eons. The he [~inh,le Circuit in rbis exmle-1 is aniddflm. Identifiers a& names eiva . . -
to d u l e r , vanabler (c g.. a s i p l . . and &r elements of the language lo thsl they eaa b; ref.
ercnccd in the deugn. Ln general. n c chmw meanrngful -s for modules. Idenufien are wm.
posed of alphanumeric characters and the underrore 0, and are case sensitive. ldcntifm must
sm wilh an alphabetic c b m r or an underscore, but they c m o t $ran with a number.

HDL Example 3.1 (Combiit iood loplc modeled ailh primllisa)

1, Venlop mod* 01 ctrun of Figure 3 37 EEE 13-1985 Syntsx

module Slmple-Circuit (A. 0. C. D. E);
output D, E;
Input A. B. C:
win wl:

and Gf (wl. A, B); I1 OpUonal gals lnslsnw name
not G2 (E, C):
M 03 (0, w l , Ek
endmodule

The pm list of a m h l e is the interface between the module and iir environment. la this
example. the ports are the inputs and OutpnU of the circuit. The logic values of the inputs to
a circuit are determined bv the environment: the Ionic values of the ournuts an determined , -
within the ulrcuil and result fwm the acuon of tbc inpula un the rlrcuit. The pon list is en-
closed in pannthcrcr. and comma$ am used to separate elemenls of the list. Tbe statement

is terminated with a semicolon (;), In our examples, all keywords (which must be in lower-
case) are printed in bold for clarity, but that is not a requirement of the language. Next, the
keywords input and output specify which of the ports are inputs and which are outputs. In-
ternal connections are declared as wires. The circuit in this example has one internal con-
nection, at terminal w l , and is declared with the keyword wire. The structure of the circuit
is specified by a list of (predefined) primitive gates, each identified by a descriptive key-
word (and, not, or). The elements of the list are referred to as instantiations of a gate, each
of which is referred to as a gate instance. Each gate instantiation consists of an optional
name (such as G I , 452, etc,) followed by the gate output and inputs separated by commas and
enclosed in parentheses, The output of a primitive gate is always listed first, followed by
the inputs. For example, the OR gate of the schematic is represented by the or primitive, is
named G3, and has output D and inputs w l and E, (Note: The output of a primitive must be
listed first, but the inputs and outputs of a module may be Iisted in any order.) The module
description ends with the keyword endmodule, Each statement must be terminated with a
semicolon, but there is no semicolon after endmodule.

It is important to understand the distinction between the tern declarradun and hsi?miatim.
A Verilog module is declared. Its declaration specifies the input+utput behavior of the hard-
ware that it represents, Predefmed primitives are n ~ t declared, because their defhition is spec-
ified by the Imguage and is not subject to change by the user, Primitives are used (i,e.,
instantiated), just as gates are used to populate a printed circuit board. We'll see that oaoe a d-
ule has been declared, it may be used (instantiated) within a design. Note that Simple-Cixuir
is not a computational model iike hose developed in an ordinq progfamming language: The
sequential ordering of the statements in the model does not specify a sequence of computations.
A Verihg model is a descriptive model. Simple-Circuit describes what primitives form a cir-
cuit and how they ape connected, The inputatput behavior of the circuit is implicitly speci-
fied by the description because the behavior of each logic gate is defined. Thus, an HDL-based
model can be used to simglate the<c*@ that it Fpresepp.

.- . . .

- e m
All physical circuits exhibit a propagation delay between the transition of an input and a resulting
transition of an output. When an HDL model of a circuit is simulated, it is sometimes neces-
sary to specify the amount of delay from the input to the output of its gates. In Verilog, the prop-
agation delay of a gate is specified in terms of tim units and is specified by the symbol #. The
numbers associated witb time delays in Verilog &re dimensionless. The association of a time
unit with physical time is made with the 'thescale compiler directive. (Compiler directives
start with the (I) back quote, or grave accent, symbol.) Such a directive is specified before the
declaration of a module and applies to all numerical valaes of time in the code that follows. An
example of a timescale directive is

tlmescale 1 ns11 Oops

The first number specifies the unit of measaremat for h e delays. The second number spec-
ifies the pmision for which the deIays are rounded off, in this case to 0.1 ns. If no rimescale
is specifled, a simulator may display dimensionless values or default to a certain time . < . unit,
usually 1 ns (= sw). Our examples will use only the default time unit.

Section 3.10 Hardware Derniptlon language 11 1

Table 3.6
output Of c o t s after May

lnpvt o~tpvt TilmUnlts -
(nr) ABC f w l D

lnili~l - 0 0 0 1 0 1
change - 111 1 0 1

10 11 1 0 0 1
20 111 0 0 1
30 111 0 1 0
40 1 1 1 0 1 0
50 1 1 1 0 1 1

W L Example 3.2 repeats the description of the simple circuit of Example 3.1, hut with
propagation delays specified for each gate. The and, or, and not gates have a time delay of 30.
20, and 10 ns, respectively. If the circuit is simulated and the inputschange fromA, B, C = 0
to A, B. C = 1, the outputs change as shown in Table 3.6 (calculated by hand or gemrated by a
simulator). The output of the inverter at Echanges from 1 to0 after a 10-ns delay. The ourput of
rhc AND gate at wl changes from 0 to 1 after a 30-11s delay. Tl output of the OR gate at D
changes from 1 to 0 at t = 30 ns and rhcn changes back to 1 at t = 50 ns. In bath cases. the

~ ~ ~~~ ~ ~ ~~ ~~~ ~~.
change in lkoutput of he OR gaw rc\xln fmm a ihangc m nu inputs 20 nr earliur It is clear from
!his result tlm although output D evcnlunlly return\ to a final \due of 1 dtsr the input changes.
he gate delay, pmduce a nzgartve spke that lasts 20 ns before the t i ~ l value is reached.

BDL Example 3.2 (Gate-level model nlth pmpagptloa deleys)

N Verilog model of simple circuit with pmpagation delay

module Simple_Cirwitgmp-delay (A. 0. C. D. E):
output D, E:
input A. 0, C
win w l :

and X(30) G I (wl. A, 0):
not W10) 0 2 (E, C):
or W20) 03 (D, wl . E):

endmdule

In order to simulate a circuit with an HDL. it is necessary to apply inputs to the circuit so
that the simulator will generate an outputresponsc. An HDLdcEniption thal provides the stim-
ulus to a design is called a test bench. The writing of test benches is explained in more detail
at the end of Section 4.12. Here, we demomuate the procedrne with a simple example witi-
out dwellingoo too many details. HDLExample 3.3 shows a test bench for simulating thecir-
cuit with delay. (Note the distinguishing name Simple-CircuitpmpPdeI~y.) In its simplest

fmn, a mt kwh is a module CMI- a Bignal gemrator and an instantiation of the model
that is to be verifiad. Note tbat tBe Wt beneb CtSiqob-Cirruit~rop,delay) has no input or
mQut ptq,.kause it d k not intemt wftfi its tseavironment. In general, we prefer to name
the test k c h with the pdix t, wmSambQd ~4th the name of the module that is to be tested
by the tm h c h , but that choice is left to the dr&m. Within the test bench, the inputs to the
c e t 831: ~~ with keyword reg d the outputs are declared with the k e y w d wire. The
module S h p l - C i r c u i t g m p is instantiated with the instance name MI. Every instan-
tiation of a module must include a unique instance name. Note that using a test bench is sim-
ilar to testing actual hardware by attaching signal generators to the inputs of a circuit and
attaching probes (wires) to the outputs of the circuit. (The interaction between the signal g a -
erators of the stimulus module and the instantiated circait module is illuseate. in Fig, 4.33.)

MIL Example 3 3

I f Test bench for Simple-~rcuitgmp-delay

module t-SImpledCircult_prop-delay;
wlre D, E;
w A, B, C;

Slmple~Circult~rop~deI~y~Ml (A, B, C, D, E); /I Instance name requlred

lnitlal
begin
A = l'bO; 5 = l'bO; ,C = l'bO;
#100A= l'bl; El = l ' b l ; C = l 'bl;

end

Hardware signal generators are not used to verify an WDL model: The entire simulation ex-
ercise is done with software mcd~ls executing on a digital computer: The wavefotms of the input
signals are abstractly modeled (generated) by Verilog statements specifying waveform values
and transitions. The initld keyword is used with a set of statements that begin executing when
the simulation is initialized; InlW terminates execution when the last statement has hished
executing. initial statements are commonly used to &scribe waveforms in a test b h . The
set of statements to be executed is called a block statement and consists of several stakments
enclosed by the keywords begin and end. The action specitied by the statements begins when
the simulation is launched, and the statements are executed in sequence, from top to bottom, :
by a simulator in order to provide the input to the circuit. Initially, A, B, C = 0. (A, B, and C
are each set to I'M], which signifies one binary digit with a value of 0.) After 100 ns, the in-
puts cbange to A, B, C = 1. Ma another 100 ns, the simulation termhales at time 200 ns. A -

second initial statement uws tlre $fMh system task to specify termination of the simularion. -7

If a statement is preceded by a delay value te.g., #100), the simulator postpnes executing the 4,
statement until the spfied time delay has elapsed. The timing diagram of waveforms that result .'.

Section 3.10 Hardware Desctiptlon Language 113

F K i U a 3.Y
Slmlation output of HDL Dimple 3.3

from the slmulanon is shuun m Flgm 3 38. The lolal s~mulauun takes 203 ns Toe Inputs A.
B, and Cchangc frumO lo I arvr 100nr. Oulpul L is unknown for the Curt 10 nr (denoted by
shading). and wtput Dis unknown for the tint 30 ns. Output E g a s fmm 1 to0 at 110 ns. Out-
put D g a s from 1 to 0 at 130 ns and back to 1 at I50 ns. just as we predicted in Table 3.6.

Boolean Expressfons
Boolean equations describing combinational logic are specified in Vedog with a conlinuous
assignment statement consisting af the keyword ssdgn followed by a Boolean cxpnssion. To
distinguish arithmetic operators from logical operators, Verilog u ~ s the symbols (a), (I), and
(-) for AND, OR, and NOT (complement), respectively. Thus, to describe the simple circuit
of Fig. 3.37 with a Boolean expression, we uw the statement

assign D = (A 8 B)I-C:
HDLExample 3.4 describes a circuit that is specified with & following two Boolean expressions:

E = A + BC+BfD
F=B 'C+BC 'D '

The equations specify how the logic values E and F are determined by the values ofA. 8. C,
and D.

HDL Exnmple3.4 (Cumbinatiunal logic modeled with Bod- rguallaos)

11 Venlog mode C~rsu~t wth Booleen exprerr on8

modul* Clrcult-Boolean-CA (E. F, A, 6 , C, D):
oulput E. F;
Input A. B, C, D:

The circuit has two outputs E md F and four inputs A, B, C, and D. The two ndgn state-
men& d d b e b e B d c m equations. The values of E and F during simulation are determined
dynamidy by the values of A, B, C, and D. The simulator demts when the t& bwch changes
a value of one or morr: of the inputs. When this happens, the simulator updates the v a l m of E
and F. The continuous assignrraent mechomism is so named because the relationship between
the assigned value and the variables is p m m t n t . The mechanism acts just like combhation-
a1 logic, has a gate-level equivalent circuit, and is referred to as impki t cornbinatioml logic,

We have shown that a digital circuit can be desmibed with HDL stakments, just as it can
be drawn in a circuit diagram or specified with a Boolean expression, A third alternative is to
describe combinational logic with a truth table.

The logic gates used in Vailog descriptions with keywords sod, or, ctc., nk e e d by the sys-
tem and are referred to as qstm primitives. (Caution: Other languages m y use these words
difewntiy, y,) The user can create additional prhitives by def'ning them in tabular f o m These
types of circuits are referred to as uer-defldprimitives (UDPs). One way of w i n g a dig-
ital circuit in tabular form is by meam of a truth tabb. UDP descriptions do not use the key-
word pair module . . . emhoduie. Instead, they are declared with the keyword pair primitive
. . , endprimithe. The best way to demonshate a UDP -on is by means of an example.

HDL Example 3.5 defines a UDP with a imth table. It pmcwds,wiccording to the following
general rules: , : i - -

* It irs declared with the keyword primitive, followed by a name and port list.
There can be only one output, and it must be listed first in the port list and declared with

,- ' ' keyword output. ' ' .

'here can be my numbex of inputs. The order in which they are k h d in the hput
declaration must conform to the order in which they are given values in the table that
follows.
The truth tabb is enclosed within the keywords table and endtabIe.
The values of the inputs are listed in order, ending with a colon (:). The output is always
the last entry in a row and is followed by a semico1on (:).

. I.

The declaration of a UDP ends with the keyword endprlmidve.

Note that the variables listed on top of the table are pmt of a comment and are shown only
for clarity, The system recognizes the variables by the wder in which they are listed in the
input de&ratim. A user-defined primitive can be instantiated in the construction of other mod-
ules (digital circuits), just as the system primitives are used. Far example, the declaration

Circuit-with-UDP-0247 (E, F, A, B, C, D);
wi l l produce a circuit that implements the hardware shown in Figure 3.39.

Although Verilog HDL uses this kind of description for UDPs only, other HDLB and
computer-aided design (CAD) systems use other pmxdures to specify dipid circuits in tab-
ular form. The tables can be processed by CAD software to derive an efficient gate struc-
ture of the design. None of Verilog's predefined primitives describes squential logic. The

Section 3.10 Hardware Dedptlon language 115

HDL Example 35

11 Verib model: Uwr-defined PrimUive

primitlva UDP-02487 (D. 4 B. C);
output 0
Input A. B. C:

//Truth table for D = f (A. 6, C) = z (0,2,4.6.7):
able
I I A B C : D IlColumn header wmment

0 0 0 1;
0 0 1 0:

11 instantiate primitive

modute Circu~-wiii--UDPU02487 (0.1, a, b, o, d);
OUtPUt 0. r:
input a, b. c. d:

UDP-02467 (0, a, b. 0):
and (f, e, d): 11 Option gate instance name omitted

endmodula

Chapter 3 Gate-tewl Mhrhnlzrvtion

m d l of a ~equential UDP r q h that Iu output be & l a d as a reg data type, and that
a column be added to the truth table to b r i b e the next state. So the columns arc organ-
izes as inputs : state : next state.

In this mtion, we W u d the Verilog HDL and presented simple examples to illustrate
al-vcs for model@ combbtimal lo&. A rnm detailed pentation of Verilog HDL
~anbefounainhnextchap.Thereaderfamiliarwith~binational~cango~y
to Section 4.12 to contlnue with this subjdct.

_ = .. 2' ,

PROBLEMS

Answers to problems marked with * I* st of the bwk,

3.1' Skllplify tho following B o o b functions, using thra-variable maps:
(a) F(x, y, t) = Z(O,2,6,7) 01 F (x , y, t) = X(0,2.3,4,6)
(c) F(x, y. r) - X(O.1, Z 3.7) (dl F(x , y, z) = BC3,S. 6 7)

3.2 Simplify the folio* Boolean fuactim, using three-varinbla maps:
(aYC FIX, g, e) = 2 (0, I , 5.7) @Y F (x . y, z) = 8(1,2.3,6,7)
(c) F (x , y , z) = Z(O,1,6,7) (d) P (x , y, z) = P (4 1,3,4,5)
le) F (x , y, z) = XI1,3,5,7) (0 F(x, y. z) = P(1,4.5.6,7)

3.3* Simplify the following Bwla ezpsshns, using thra -vhbb maps:
(ay F(x,y,z) = xy + x'y'z' + x'yz' IbY F(x,y.z) = x'y' + yz + *'ye'
Icy F (x , y, r) = x'y + yz' + y'z' (d) F(x, y, z) = xyz + x'y'e + xy'z'

3.4 Simplify the following Boolorn funcdons, using Ku:ansa&gcgk mapn:
(a)W F (x , y, 2) = 2(2,3, & 7) (bp F(A, B, C, D) = 2(4,6,7,15)
(c)*F(A ,B ,C ,D) = E(3,7,11,13,14,15) (d)*F(w,x ,y , z) = E(2,3,12,13,14,15)
(el F(w,x ,y , z) = X(1,4,5,6,7,13) (0 F(w, x, y, r) = X(O, 1,5,8,9)

3 3 Simplify the follow@ Bwlertn function6, using fowvariabla maps:
(aY FF(, x, y, z) = 2(1,4,5,6,12,14,15)
0 F (A , B , C , D) = X(1,5,9,10,11,14,15)
(cl F(w, x , y , e) X(O,1,4.5,6,7,8,9)
(dy F(A, B, C, D) = X(O,24.5,6,7,8,10,13,15)

3.6 Simplify the following Boolean qmssions, using fwr-variable map:
(ar A'B'C'D' + AC'D' + B'CD' + A'BCD + BC'D
(by x'z + w'xy' + w(x'y + x y ')
(c) A'B'C'D' + A'CL)' + AB'D' + ABCD + A'BD
(d) A'B'C'D' + AB'C + B'CD' + ABCD' + BC'D

3.7 Simplify the followhg Boolsan eqmdons, using fow-variable maps:
(ap w'e + xz + x 'y -t wx'z
(b) C'D + A'B'C + ABC' + AE'C
(cp AB'C + B'C'D' + BCD + ACD' + A'B'C + A'BC'D
(d) xyz + wy + wxy' + x'y

3 Find the mintsrms of tho following Bwleaa -S by first plotting each function in a q:
(ar xy + yz + xy'z (by C'P + ABC' + ABD' + A'B'D
(c) wyz f W'X' + WXZ' (d) A'B + A'CD + B'CD + E D '

3 . 1 Draw n laic diagram using only t w d r p t NOR to implement the following fanction:

F(A, 8, C, D) = (A $ B)' (C 0)

3,f 9 Simplify tha following hctions, d impkmmt them with tw+level NOR gate dmtits:
(a)*F = wxt + y'zr + w'yz'
@) F(w, x, y, z) = X(1,2,13,14)
Ic) F(x.y. r) = [(x + y)(x l + z)l'

f ,ZO Drsw the multi-level NOR and multi-he1 NAND circuits for the following expression:

3X l k w the multi-level NAND Circlrit for the following expssim:

3 a Convat the logic &apm of the circuit shown in Fig. 4.4 into a multipbhvd NAND circuit.

3.23 hqiement tha following Boolean function F, togetha with tha don't-- ~onditims d, using no
, . . ' , -

more than two NOR gate#: > . . . ' 1

F(A,B.C.D)=2(2.4,6,10.12) -#.,

d(A, 8, C, D) = X(0,8, 9.13) *. . . 5 . . :

- .
Assume that both h e normal and complsmtnt iapurs arc available. ..

3 Implement ths following Boolean function F, using the two-level f k of logic (a) NAND-
AND, @) AND-NOR, .@) OR-NAND, a d (d) NOR-OR .:, ; 1 "

3.m tistd;eetgh'tdsgrmetatew1~f-~~tbst~~sdwtoasinsleolpuation.~xplrin
how the degwmte tw+lavtl fmms em be used to exttnd the numba of inputs to a gate.

3.26 With the use of maps, fhd the simplest sum-of-products farm of the function F = f g, where

f = ak', + c'd .+ a'cd' + b'cd'

and .' - -
- - - , . - .

g = (a + b + e' + d')(b' + c ' + d)(a ' + c $ d ')

3.27 Show that the dual of the ~chs ivo -OR Is also its mplemant.

3 Dwive the circuits for a three-bit parity generam and four-bit parity checker using an odd
parity bit.

3.29 Impkmat tke following four Boolean uxpradons with three half adders -
l i ..

D = A O B B C
E - A'BC + A3'C

F = ABC' + (A' + 3')C

G = ABC ..

3-36. Implement the following Boolean w c p w s h with exclusive-OR md AND gates:

F = AB'CD' + A'BCD' + AB'C'D + A'BC'D

rlnpolupus
:(a 'PI wu
v ' 6 WU

x j m
: K Z) JO

!(a'z 'M) pus
!(3'* x) pus

:(P '3 '8 'x) pue
!P 'S '2 % 'X 'M PIIM

:A Uldlno
:a '3 'a 'V w d u ~

:(j 'a '3 'a 'v) v -qmJg elnpoim R)

:m$ww 8 0 ~ 3 ~ r m w o ~ ?m ~q FWWJS i ! w a I~.@!P =II JO ~ J % V =II *w WE

L eu~i II ~alnpouyopua
Q aun N :(3 :a '3) 80
s eun 11 '(3 'v 'a) wu
r aun 11 :(a 'a 'v) ~6 PUQ
E eull N a vnchno
z eu!i 11 '3 'a mdmo '3 'a 'v W ~ U I
L eun 11 (4 'a '3 'a 'v)e-ldwx3 e ~ n ~ o u l

: ~ v o g &
UP sal88 on!lrmud lo& samo 1.q) aiou) ruo!rorspap Su!mo!~oj aqr o! s o l l a muA9 aqa p u ! ~ &T.S

'xo!nsqq s. i !n~~!~ 31 mmlnug pue q ~ u q aa B apfi

.va + (8 + av)3 = c " D
(,a + V)(B.J + 38V + ,8J) = <1n0

.#(a + ,vKs + 3) = rime
:"opu", wqma b!

-WIOJ 31 rcq p w d s 1 1 n q ~ ~ J O uopdumap %IP~A = nw h m d ! s m monu!loo~ a"!= WE

' (a) usd u! rlmrva aql LJPA 01 I!">
-naaq ae[nm!s pw'(('c ~I~X~~(THOIJVI~I g ~ ~ q > n i o "v!) qnpou sn lnwr s a"fi ($1

'sLe~apaw Smpnpu! ' W J ~ J n p j o uogdu~rap p ~ q - d a o l u a ~ e apfi (4)
'ruK = r o l o ~ ~ u r m l ~ q ~ ~ i) ~ o l ~ ~ a q ~ m s ~ s q l a ~ (u)

' lo - ,ix ol = rr
moq sw8 i!nwa a q JO lndm w 'mil M 20) Lqap so 01 B we 'am% aw ne IOJ islap
sm 8 B 'JOY%+ M 10) OU p JO BI'P B W!m mq (B)iE'E 'SH ;I0 i!n3Jp 1I@Pn!S"IJXo aW.

LZ'E'S'J UJ 973 'S'J (a) (q)ECE .)!rl (P)
(r1n.c '8% (3) (~)zz 'z 'Z!A (41 (~)ZZ'C '$3 (8)

m omoqr i!ou!l a q j o w q d ~ ~ a p a o p ~ s huamal8le luawa!rrc rnon+moJ B+sn r r . ~

120 Chapter 3 Gate-Lwei M@l.mlzqtion

(b) module Clrcul~B (A H . A-B, A-eqBl AO, A1,80, B l);
output w, A-& A--6;
Input AO, All BO, Bl;
nor (A*, k m * A-wB);
or (A-lt8, w l , HR, w3);
and (A-eqB, d, W51;
and (wl, w6, B1);
and (w2, w6, w7, BOK
and (w3, w?,BO, 61);
not (w6,Al);
not (w7, AO);
xnor (w4,Al,81);
mar (M, AO, 60);

ondmodub

(c) module Circuit-C (output y t , Input a, b, output y2);
asslgn y l = a & b;
or (y2, a, b);

andmodule
3.37 A majority logic famhn is a B d a n W o n &st is equal to 1 if the majority of the vmiabk

am qusl to I, equal to 0 otherwise. Wtt a &dog --&in& phitiye for a four-bit m@i-
ty fulCtiDrI.

3.3% Simulate the behavior of Cilrult~witR,UDP,M&7, using the sdmulus waveform shown in
Fig. P3.38.

RGURE P3.38
Stimulus' wadoms . , 'for Pmbm 3.38

References 121

R E F E R E N C E S

1. Blwsm, J. 1997. A Vrrilog HDLPrimer: AUcnlown. PA! Slat Galaxy Rela.
2. C m , M.D. 1999. Modeling. Synrksis nndRopidPmlofyping with the Vetiiog HDL Uppr

Saddle River, NI: Rentice Hall.
3. Hru. F. 1.. and G. R. -ON. 1981, lnrmduetion lo Swirching Ihro?yond LogieoiDcsign, 36

cd. New York! Jobn Wilcy.
4. IEEE Srandnrd Hamban Deseripfion Langungc Brrrrd on lhr Ven'iog Hombon Descripflon

Language (IEEE Std 1364-1595). 1995. New Yarlr: The InotiNtc of Electrid and Elccvonics
Endncen.

5. KARri~uas. M. A Map Methcd far SynUrris of Combationsl Logic Circuiu. h s o c t l o n s of
AIEE, Comnmication Md Eirelmnics. 72. pan I (Nov. 1953): 593-59.

6 Komn. 2.1978. Swirrhing ondAuromolo 7luav. 2d ed. New Ymk McOraw-Hill.
7. Mm0.M.M.. andC.R. Khn. 2W4.bgicondCanllulerDesign F u h m t a k , 3rded. Upper

Saddle River. NI: Rentice Hall.
8. MCCLUJIEY. 8. J. 1986. Logic Design Principles. Englewood Cliffs. NI: Renlicc.Hal1.
9. P m . S. 19%. Vctiiog HDL: A Gulde 10 Digild Design ond Synrhestr. Mountai. View.

CA: SunSofl Rers (a Rentice Hall title).

	03 – Gate-Level Minimization
	70.tif
	71.tif
	72.tif
	73.tif
	74.tif
	75.tif
	76.tif
	77.tif
	78.tif
	79.tif
	80.tif
	81.tif
	82.tif
	83.tif
	84.tif
	85.tif
	86.tif
	87.tif
	88.tif
	89.tif
	90.tif
	91.tif
	92.tif
	93.tif
	94.tif
	95.tif
	96.tif
	97.tif
	98.tif
	99.tif
	100.tif
	101.tif
	102.tif
	103.tif
	104.tif
	105.tif
	106.tif
	107.tif
	108.tif
	109.tif
	110.tif
	111.tif
	112.tif
	113.tif
	114.tif
	115.tif
	116.tif
	117.tif
	118.tif
	119.tif
	120.tif
	121.tif

