
Chapter 7

Memory and Programmable Logic

7.1 INTRODUCTION

A memory unit is a device to which binary information is transferred for storage and from
which information is retrieved whea & for processing. When data processing takes place,
information from memory is transferred to selected registers in the processing anit. Interme-
diate and final results obtained in the processing unit are transferred back to be stored in mem-
ory, Binary information received from an input device is stored in memory. and information
transferred to an output device is Wen from memory. A memory unit is a collection of cells
capable of storing a large quanlity of b i i information.

There are two types of d e 8 that are used in digital systems: mndommcess memory
(RAM) and read-only memory (ROM). RAM stores new information for later use. The process
of storhg new infomation into memory is referred to as a menmy wrife e o n . The process
of transferring the stored information out of memory is referred to as a memory read opera-
tion. RAM can perform both write and read operations. ROM can perfom only the read op-
eratim. This means that suitable binary information is already stored inside memory and can
be retrieved or read at any time. However, that information cannot be altered by writing,

ROM is a pmgmmabk logic W e (PLD). The binary information that is stored within such
a device is specified in some fashion and then embedded within the hardwam in a process is
r e f d to as p m g m i n g the &vice. Tbe word "pro%ramming" h m refers to a hardware pm
cedure which specifies the bits that me inserted into the hardware cwfigumlio11 of the device.

ROM is one example of a PLD. Otber such units are the programmable logic array (PLA),
programmable array logic (PAL), and the field-programmable gate may (FPGA). A PLD is an
integrated circuit with internal logic gates connected through electronic path that khave sim-
ilarly to fuses. In the original state of the device, all the fuses ue intact+ Programming the
device invoIves blowing those fuses along the paths that must be removed in ordm to obtain

Section 7.2 Random-Aaesr Memory Z35

(a) Conventional symbol (b) Array logic symbol

HtURE 7.1
Conventional a d m a y logic diagrams for OR gate

the particular conjiguration of the desired logic function In this chapter, we introduce the con-
figuration of PLDs and indicate procedures for their use in the design of digital systems. We
also present CMOS FPGAs, which are configured by dawnloading a stream of bits into the de-
vice to dgure transmission gates ta establish the internal connectivity required by a speci-
fkd logic function (combinational or sequentiaI).

A typical PLD may have hundreds to &ms of gates interconned through hundreds to thou-
sands of internal paths. In order to show the internal logic diagram of such a device in a concise
form, it is neoessary to employ a special gate symbology applicable to array logic. Figure 7,l shows
the conventional and array logic symbols for a multiple-input OR gate. Instead of having multi-
ple input lines into the gate, we draw a single line entering the gate. The input lines me drawn per-
pdiwIar to this single line and are connected to the gate through internal fuses. In a similar
fashion, we can draw the array logic for an AND gate. This type of graphical representation for
the inputs of gates will k used throughout the chapter in array logic diagrams.

7.2 RANDOM-ACCESS MEMORY

Amemory unit is a collection of storage cells, together with associated circuits needed to trans-
fer information into and out of a device. The architecture of memory is such that information
can be seldvely relrieved from any of its internal locations, The time it takes to transfer in-
f m t i o n to or from any d e s M random location is always the same-hence the name mdom-
access mmty, abbreviated RAM. In contrast, the time required to retrieve information that
is stored on magnetic tape depends on the location of the data.

A memory unit stores binary information in groups of bits called words. A word in memo-
ry is an entity of bits that move in and out of storage as a unit. A memory word is a group of
1's and 0's and may represent a number, an insbuction, one or more alphanumeric characters,
or any other binary-coded information, A group of 8 bits is called a byte, Most computer mem-
ories use words that are multiples of 8 bits in length. Thus, a 16-bit word contains two bytes,
and a 32-bit word is made up of four bytes. The capacity of a memory unit is usually stated as
the total number of bytes that the unit can store.

Communication between memory and its environment is achieved through data input and
output lines, address selection lines, and control lines that specify the direction of transfer. A
blmk diagram of a memory unit is shown in Fig. 7.2. The n data input lines provide the infor-
mation to be stored in memory, and the pa data output lines supply the information coming out
of memory. The k address lines specify the particular word chosen among the many available.
The two control inputs specify the direction of transfer &sired: The Write input causes bina-
ry data to be transferred into the memory, and the Read input causes binary data to be -6-

ferred out of memory.

286 €hapter 7. Memory and Progammle Leglc

I n data input lines

k address h-s,

Read

Wrire

The memory unit is specified by the number of words it contains and the number of bits
in each word. The address lines select one particular word. Each word in memory is assigned
an identification number, called an address, starting horn 0 up to zk - I , where k is the
number of address lines. The selection of a specific word h i d e memory is done by apply-
ing the k-bit address to the address lines. An internal decoder accepts this address and opens
the paths needed to select the word specified. Memories vary greatly in size and may range
from 1,024 words, requiring an address of 10 bits, to z3' words, requiring 32 address bits. It
is customary to refer to the number of words (or bytes) in memory w i h one of the letters K
(kilo), M (mega), and G (giga). K is equal to 21°, M is equal to 220, and G is equal to Z3O.
Thus, 64K = 216. 2M = 221, and 4G = 232.

Consider, for example, a memory unit with a capacity of 1K words of 16 bits each. Since
1 K = 1,024 = 2'' and 16 bits d t u t e two bytes, we can say that the memory can accom-
modate 2,048 = 2K bytes. Figure 7.3 shows possible contents of the k t three and the last

Memory address

Binary W m a l Memory content

Section 7-2 Randm-Access M e m q 287

three words of this memory. Each word contains 14 bits that can be divided into two bytes. The
words are recognized by their decimal address from 0 to 1,023. The equivalent binary address
consists of 10 bits. The first address is specified with ten 0's; the last address is specified with
ten l 's, because 1,023 in binary is equal to I1 1 1 1 1 1 11 1. A word in memory ia selected by its bi-
nary address. When a word is read or written, the memory operates on all 16 bits as a single unit.

The 1K X 16 memory of Fig. 7.3 has 10 bits in the address and 16 bits in each word. As
another example, a 64K X 10 memory will have 16 bits in the address (since 64K = 216)
and each word will consist of 10 bits. The number of address bits needed in a memory is de-
pendent on the total number of words that can be stored in the memory and is independent of
the number of bits in each word. The number of bits in the address is determined from the re-
lationship 2k 2 rn, where m is the total number of words and k is the number of address bits
needed to satisfy the relationship.

Write and Read Operations

The two operations that RAM can perform are the write and read operations. As alluded to
earlier, the write signal specifies a transfer-in operation and the read signal specses a transfer-
out operation, On accepting one of these control signals, the internal circuits inside ?he mem-
ory provide the desired operation.

The steps that must be taken for the purpose of transferring a new word to be stored into
memory are as follows:

1. Apply the binary address of the desired word to the address lines.
2. Apply the data bits that must be stored in memory to the data input lines.
3. Activate the write input.

The memory unit will then take the bits from the input data lines and store them in the word
specified by the address Lines.

The steps that must be taken for the purpose of transferring a stored word out of memory
are as follows:

1. Apply the binary address of the desired word to the address lines.
2. Activate the read input.

The memory unit will then take the bits from the word that has been selected by the address
and apply them to the output data lines, The contents of the selected word do not change after
the read operation, i.e., the word operation is nondestructive.

Commercial memory components available in integrated-circuit chips sometimes provide
the two control inputs for reading and writing in a somewhat diffexent configuration. Instead
of having separate read and write inputs to control the two operations, most integrated circuits
provide two other control inputs: One input selects the unit and h e other determines the oper-
ation. The memory operations that result from these control inputs are specified in Table 7.1.

The memory enable (sometimes called the chip select) is used to enable the particular mem-
ory chip in a multichip implementation of a large memory. When the memory enable is inac-
tive, the memory chip is not selected and no operation is performed When the memory enable
input is active, the readwrite input determines the operation to be performed.

Chapter 7 Memory and P-grammable Logic

Table 7
Contnol Inp~ o Memory Chip

Memoq Enable Read/Wr' Memory OprrrtCon
- - - <

0 X None
1 0 write to selected word
1 1 Read from selected word

Memory Description In HDL

Memory is modeled in the Verilog HDL by an array of registers. It is declared with a reg key-
word, using a two-dimensional array. The first number in the array s@es the number of
bits in a word (the wond bngth) and the second gives the number of words in memory (mem-
ory depth). For example, a memory of 1,024 words with 16 bits per word is declared as

reg[15: 0] memword 10: 70231;

This statement describes a two-dimensional array of 1,024 registers, each containing 16 bits,
The second array range in the declaration of mernword specifies the total number of words in
memory and is equivalent to the address of the memory. For example, m w o d [5 l 2] refers
to the 16-bit memory word at address 5 12.
The operation of a memory unit is illustrated in HDL Example 7.1. The memory has 64

words of four bits each. There axe two control inputs: Enubk and R e f i r e . Tbe DataIn and
DataOut lines have four bits each. The inputAddress must have six bits (since z6 = 64). The
memory is declared as a two-dimensional array of registers, with M m used as an idenaer that
can be referenced with an index to access any of the 64 words. A memory operation requires
that the Enable input be active. The Readwrite input determines the type of operation. If
ReadWrite is I , the memory performs a read operation symbolized by the statement

DataOut c Mem [Address];

Execution of this statement causes a transfer of four bits from the selected memory word spec-
ified by Address onto the Dataout lines, If Rendwrite is 0, the memory performs a write op-
eration symbolized by the shtement

Mem [Address] t Dataln;

Exewion of this statement causes a d e r from the four-bit Danrln into the memory word
8 e l M b y d d ~ s s . When Enabk is equal to 0, the memory is disabled a d the mlpls are assumed
to be in a high-impdance state, indicated by the symbol z. Thus, lhe mamnry has *-stale omputs.

l3DL Example 7.1

11 Read and write operations of memory
// Memory size is 64 words of four bits each.

modula memory (Enable, ReadWrlte, Address, Dataln, Dataout);
Input Enable, ReadWrite;
Input [3: 01 Dataln;

Input 15: 0] A d d m
output p: o] Dataout;
reg 13: 01 Dataout;
rag 13: 01 Mem [O: 631;
ahnays @ (Enable or ReadWrib)

R (Enable)
If (RmdWrlte) Dataout = Mem [Address]; I1 Read
elsm Mem [Address] = Dataln; I / Wrlts

else Dataout = 4'bz; 11 High impedanca state
endmodufe

// 34 x 4 memory

Ttmtng Wavmforms

The opation of the memory unit is collmlled by an external devioe such as a central processing
uait (BU). The CPU is usually symhmid by its own clock The memory, however, does
not employ an internal clock. Instead, its read and write operations a ~ e specified by control in-
puts. The access time of memory is the time required to select a word and read it. The cycle
sim of memory is the time required to complete a write operation. The CPU must provide the
memory contTol signals in such a way as rn synchroonize its internal clocked operatiom with
the read and write options of memory. This means that the tlccess time and cycle time of
the memory must be within a time equal to a fixed number of CPU clock cycles.

Suppose as an exampIe that a CPU operates with a dock frequency of 50 MHz, giving a pe-
riod of 20 ns for one clock cycle. Suppose also that the Crm communicates with a memory
whose a m time and cycle t h e do not exceed 50 ns. Tbis means that the write cyclc termi-
nates the storage of the selected word within s 50-ns intervaf and that the red cycle provides
the output data of the seleckd word within 50 ns or less. (The two numbers are not always the
same.) Since the period of the BU cycle is 20 ns, it will be necessary to devote at least two-
and-a-haff, and possibly three, clock cycles for each memory -st.
The memory timing shown in Fq. 7.4 is for a CPU with a 50-MHz clock and a memory with

50 os maximum cycle time. l b write cycle in part (a) shows three %mi- cycles: n, 22, and T3.
For a write aperation, the CPU must provide the addmss and input data to the msmpry. This is done
atthebeghuhgofT1. ~ e m l i n e g t h a t m s e e a c h ~ i n ~ e ~ ~ a n d ~ w a v e f o m d e s -
igaate a paaible chatlge in value of the multiple lines.) The memory enable and the redwrite sig-
n a l s m ~ b e d v ~ a f f e r t h e ~ i n t h e ~ s s ~ m ~ l e h o r d e r t o a v o i d ~
data in o t b memory m. lb memory enable signal switches to the hi& level and the d h w i t e
signal ~witches to the low level to indicate a wdte -ation. The two control dgds must stay d v e
f o r a t l e a s t 5 0 n ~ . T h e ~ s a n d ~ s l g n a L s n r m s t ~ s ~ l e f o r a & ~ ~ ~ t b e ~ -
~ p i ~ ~ ~ ~ ~ ~ A t h c ~ m p l ~ o f t h e W ~ l a c k c y c l e , t h e m e m o r y ~ o p e r a t i o n
is completed and the CPU can access h memwy again with the next TI cycle.

The read cyclc shown in Fig, 7.4Ib) has an address for the memory provided by the CW.
The mommy-enable and read/wri& signals must be in their high level for a read operation.
The memory places he. data of the word selected by the address inw the output data lines with-
in a 5bns interval [or less) h n the time that the memory enable is a c t i d . The CPU can
transfer the data into one of its intefnerl regism during the negative @ansition of T3. The next
T'l cycle is available for another memory request,

TPO Chapter 7 Memmy and Programmable Logk

Clock

Memory
address Address valid

Memory 2

Data
input Data valid

(a) Write cycle

Clock

Memory
address Address valid

enable Initiate read

Readl
Write

Data Data valid
output

7.4
M m w y rydt timtng WamfUms

The mode of access of a memory system is determined by the type of components used. In a
random-access memory, the word locations rnay be thought of as being separated in space,
each word occupying o m particular hation. In a sequential-access memory, the information
stored in some medium is not immediately xcessible, but is available only at certain intervals
of time. A magnetic disk or tape unit is of this type. Each memory location passes the read and
write heads in turn, but information is read out only when the quested word has been reached.

S d a n 7.3 Memory Decudlng B1

In a random-access memory, the access time is always the same regardless of the particular lo-
cation of the word. In a sequential-access memory, the time it takes to access a word depends
on the position of the word with respect to the position of the read head; therefore, the access
time is variable.

Integrated circuit RAM units are available in two operating modes: static and dynamic, Sta-
tic RAM (SRAM) consists essentially of internal latches that store the binary information. The
stored information remains valid as long as power is applied to the unit. Dynamic RAM
(DRAM) stores the binary information in the form of electric charges on capacitors provided
inside the chp by MOS transistors. The stored charge on the capacitors tends to discharge with
time, and the capacitors must be periodically recharged by refreshing the dynamic memory. Re-
freshing is done by cycling through the words every few railliseconds to restore the decaying
charge. DRAM offers reduced power consumption and larger storage capacity in a single mem-
ory chip. SRAM is easier to use and has shorter read and write cycles.

Memory units that lose stored information when power is turned off are said to be volatile.
CMOS integrated circuit RAMS, both static and dynamic, are of this category, since the binary
cells need external power to maintain the stored information. In contrast, a nonvolatile memo-
ry, such as magnetic disk, retains its stored information after the removal of power. This type of
memory is able to retain information because the data stored on magnetic components are rep-
resented by the direction of magnetization, which is retained after power is turned off. ROM is
another nonvolatile memory. A nonvolatile memory enables digital cornputas to store programs
that will be needed again after the computer is turned on. Programs and data that cannot be al-
tered are stored in ROM, while other Iarge programs are maintained on magnetic disks. The lat-
ter progams are transferred into the computer RAM as needed. Before the power is turned off,
the binary information from the computer RAM is wansferred to the disk so that the informa-
tion will be retained.

7.3 MEMORY DECODING

In addition to requiring storage components in a memory unit, there is a need for decoding cir-
cuits to select the memory word specified by the input address. In this section, we present the
internal construction of a RAM and demonstrate the operation of the decoder. To be able to in-
clude the entire memory in one diagram, the memory unit presented here has a small capacity
of 16 bits, arranged in four words of 4 bits each. An example of a two-dimensional coincident
decoding arrangement is presented to show a more efficient decoding scheme that is used in
large memories. We then give an example of address multiplexing commonly used in DRAM
integrated circuits.

Internal Construction

The internal construction of a RAM of m words and n bits per word consists of in X n binary
stwage cells and associated decoding circuits for selecting individual words. The binary stor-
age cell is the basic building block of a memory unit, The equivalent logic of st binary cell that
stores one bit of information is shown in Fig. 7.5. The storage part of the cell is modeled by an
SR latch with associated gates to form a D latch. Actually, the cell i s an electronic circuit with

292 ~hapter.7 Memory and Programmable Logic

Select

Output
Input

(a) Logic diagram (b) Block diagram

FIGURE 7.5
Memory cell

four to six transistors. Nevertheless, it is possible and convenient to model it in terms of logic
symbols. A binary storage cell must be very small in order to be able to pack as many cells
as possible in the small area available in the integrated circuit chip, The binary cell stores one
bit in its internal latch, The select input enables the cell for reading or writing. and the
readwrite input determines the operation of the cell when it is selected. A 1 in the readwrite
input provides the read operation by forming a path from the latch to the output terminal, A
0 in the readlwrite input provides the write operation by forming a path fmm the input terminal
to the latch.

The logical construction of a small R A M is shown in Fig, 7.6. This RAM consists of four
words of four bits each and has a total of 16 binary cells, The small blocks labeled BC repre-
sent the binary cell with its three inputs and one output, as specified in Fig. 7.505). A memory
with four words needs two address lines. The two address inputs go through a 2 X 4 decoder
to select one of the four words. The decoder is enabled with the memory-enabIe input. When
the memory enable is 0, all outputs of the decoder are 0 and none of the memory words are se-
lected, With the memory select at 1, one of the four words is selected, dictated by the value in
the two address lines. Once a word has been selected, the readwrite input determines the o p
eration. During the read operation, the four bits of the selected word go through OR gates to
the output terminals. (Note that the OR gates are drawn according to the array logic estab
lished in Fig. 7.1.) During the write operation, the data available in the input lines are trans-
ferred into the four binary cells of the selected word. The binary cells thar are not selected are
disabled, and their previous binary values remain unchanged. When the memory select input
that goes into the decoder is equal to 0, none of the words are selected and the contents of all
cells remain unchanged regardless of the value of the readwrite input.

Commercial RAMS may have a capacity of thousands of words, and each word may range
h m 1 to 64 bits. The logical construction of a large-capacity memory would be a direct ex-
tension of the configuration shown here. A memory with 2k words of n bits per word requirw
k address lines that go into a k X 2k decoder. Each one of the decoder outputs selects one word
of n bits for reading or writing.

SectIan 7.3 Memory Decoding 293

A decoder with k inputs and 2k outputs requires 2k AND gates with k inputs per gate. The total
nurnber of gates and the number of inputs per gate can be reduced by employing two decoders
in a two-dimensional selection scheme. The basic idea in two-dimensional decoding is to
arrange the memory cells in an array that is close as possible to square. In this configuration,
two kl2-input decoders are used instead of one k-input decoder. One decder performs the row
selection and the other the column selection in a two-dimensional ma& configuration.

The two-dimensional selection pattern is demonstrated in Fig. 7.7 for a 1K-word memory.
Instead of using a single 10 X 1,024 decoder, we use two 5 X 32 decoders, With the single
decoder, we would need 1,024 AND gates with 10 inputs in each. In the two-decoder case, we
need 64 AND gates with 5 inputs in each. The five most significant bits of the address go to
input X and the five least significant bits go to input Z Each word within the memory array is
selected by the coincidence of one X line and one Y line. Thus, each word in memory is selected

294 Chapter 7 Memory and Programmable toglc

L
b i n a ~ address
01100 10100 --
X If

by the whcidedce.betwew 1 bf 32 rows and 1 ~f32c~l~mn8, for a tata3 of 1.024 a d . Nore
that ea& intersection iepsents a word that m q have m y number ofbits

& zua ermple, ~oasider th w a d whose: addam js 404, The 10-bit bhq~equk*t of
is (11100 ID100, This m . X = MI00 (binmy 12) a d Y = 10100 (bm 20). The n-bil
word &at f selcmd lies ia the Xdwsder ontput mmbef 12 a d &e Y decdaoutput number
2D,), the bit8 of the ward am 8 e W far 'mdhg Qt writing.

T b PdWM memory d l m&ed in Fig" 7.5 ~ I d 1 y ' m ~ s . s i x ~~* IJl Order to buiid
with s t y , itis mxmswy to duae the number of tramistors in a cell. The

DRAM mlt contains a WIe M W tmsisbr md q wpitaf. Tbe Q- mmd w the c a p -
iW &chges with the, .wd ae mmmy cells must be @adidly ndmrged by-rehsbinp
thememq. Because nf.fb&sbple W strudmt~, DRAMs typidly have four-times ktw-dm-
dty of SRAMs, Thi~ allow fbw times z r ~ much mmry cqwity t~ be placed on a given size
of chip. The wst per bit csf DRAM star&kkis b e e to four 1- thm that of SRAM Wr-
age. A furlher cast satrings itt realized because of t l 5 ~ lawm power quiimml of DRAM e&.
These dvmb&es rnalrb DRAM the WfWed techolow for 1-e mmories in p e r s d dig-
it$ cornputas. D W chips rn available h capcities from 64K to 256M bits, Must DRAMS
have a l-b?f ,word sjw so $weal chips haw to bpwhined to a bger d size,

Section 7.3 Memory Decoding

Because of their large capacity, the address decodmg of DRAMS is manged in a twa-
dimensional array, and larger memories often have multiple arrays. To reduce the number of pins
in the IC package, designers utilize address multiplexing whereby one set of address input pins
acmmmdates the address components. In a two-dimensional array, the address is applied in two
parts at different times, with the row address k t and the column address second. Since the same
set of pins is used for both parts of the address, the size of the package is decreased significantly.
We will use a 64K-word memory to illustrate the address-multiplexing idea. A diagram of the

decoding configuration is shown in Fig. 73, The memory consists of a two-dimensiond array of
cells arranged into 256 rows by 256 columns, for a total of 2' X 28 = 216 = 64K words. There
is a single data input line, a single data output line, and a read/write control, as well as an eight-bit
address input and two address strobes, the latter included for enabiing the row and column address
into tbeirrespective registers. The row address strobe (R A S) enables the eight-bit row register, and
the column address strobe (CAS) enables the eight-bit column register. The bar on top of the name
of the strobe symbol indicates that the registers are enabled on the zero level of the signal.

-
CAS

-
RAS

I
Data Data
in out

FIGURE 7.8
Address muklplexlng for a 64lC DRAM

296 Chapter 7 Memory and PregramrtfaMe Logk

The 16-bit address is applied to the DRAM in two steps using RAS and CAS. Initially, ,both
strobes are in the 1 state. The &bit row address is applied to the address inpub and RAS is
changed to 0. This loads the row address into the row address register. RAS also enables tlxe row
decoder so that it can decode the row address and select one mw ofthe array. After a the equiv-
alent to the settling time of the row selection, RAS goes back to the I level. The &bit column
address is then applied to the addre~s inputs, and CAS is driven to the 0 state. 'Ilris &en the
column address into the column ~gistm and enables the column decoder. Now the two parts of
the address are in their respective registas, the decoders have decmkd them to select the one cell
corresponding to the row and column d r e s s , and a read or write opxlion can be perf& on
that celI. CAS must go back to the 1 level before initiating an& memory +on.

7.4 E R R O R DETECTION AND CORRECTION

The dynamic physical interaction of the electrical signals affecting the data path of a memory
unit may cause occasional errors in storing and retrieving the b i i information. The reliability
of a memory unit may be improved by employing error-detecting and ermr-~omcfing codes.
The most common error detection scheme is the parity bit. (See Section 3.9.) Aparity bit is gen-
erated and stored along with the data word in memory. The parity of the word is checked after
reading it from memory. The data word is accepted if the parity of the bits read out is correct.
If the parity checked results in an inversion, an error is detected, but it cannot be corrected.

An error-correcting code generates multiple parity check bits that are stored with h e data
word in memory. Each check bit is a parity over a group of bits in the data word When the word
is read back from memory, the associated parity bits are also read b m memory and compared
with a new set of check bits generated from the data that have been read lf the check bits are
correct, no error has occurred. If the check bits do not match the stored parity, they generate a
unique pattern, called a syndrome, that can be used to identify the bit that is in error. A single
error occurs when a bit changes in value from 1 to 0 or from 0 to 1 during the write or read op-
eration. If the specific bit in e m is identified, then the error can be corrected by comple-
menting the erroneous bit.

Hammlng Code

One of the most common error-correcting codes used in RAMS was devised by R. W. Ham-
ming, In the Hamming code, k parity bits are added to an n-bit daw word forming a new word
of n + k bits, The bit positions are numbered in sequence from 1 to n + k. Those positions
numbered as a power of 2 are reserved for the parity bits, The remaining bits are the data bits.
The ccde can be used with words of any length. Before giving the general chamzkdics of the
code, we will illustrate its operation with a data word of eight bits.

Consider, for example, the %bit data word 11000100. We include 4 parity bits with the
8-bit word and arrange the 12 bits as follows:

Bitposition: 1 2 3 4 5 6 7 8 9 10 11 12
P ~ P , 1 P 4 1 O 0 p 8 O 1 0 0

Sectfon 7,4 Error Detection and Cofrectibn

The 4 parity bits, PI, Pa, Pb and 6. are in positions 1,2,4, and 8, respectively. The 8 bits of
the data word am in the remaining psitiom. Bacb parity bit is calculated as follows:

6 = XORofbits (3,5,7,9,11) = 1 a1 $ 0 @ 0 8 0 = 0

Reme* that the excIusiveOR o@on perfonns tbe odd function: It is e q d to 1 for an odd
number of 1's in the variab1a and to 0 for an even number of 1's. Thus, each parity bit is set so
that the total number of 1's in the checked positions, including the parity bit, is always even.

The &bit data word is stored in memory together with tha 4 parity bits as a 12-bit compw
ite word. Substituting the 4 P bits in their proper positions, we obtain the 12-bit corn@&
word stored in memory:

0 0 1 1 1 0 0 1 0 1 0 0
Bitposition: 1 2 3 4 5 6 7 8 9 10 I1 12

Whenthe 12bitsmreadfromme~,theyare*@nkm.%@tyiscbecked
over the sam combination of bits, including the parity bit. The 4 check bin are evaluated as
follows:

C1 = XOR of bits (1,3,5,7,9, 11)

C2 = XOR ofbits (2,3,6,7,10,11)

C4 = XOR of bits (4,5,6,7,12)

c8 = XOR of bits (8,9,10,11,12)

A 0 check bit hignaw even parity over the checked bits and a 1 dc&pWs odd parity. Since
the bits w m st& with even parity, the result, C = C$4CtCl = 0000, indicaks that no error
has occurred. However, if C # 0, then the &bit binary number formed by the check bits gives
the position of the erronebus bit. For example, consider the following thne cases:

Bitpsition: 1 2 3 4 5 6 7 8 9 10 11 12
0 0 1 1 1 0 0 1 0 1 0 0 No-
1 0 1 1 1 0 0 1 0 1 O O E m w i n b i t l
0 0 1 l o o 0 1 0 1 0 0 Errorinbit5

In the first case, there is no error in the 12-bit w d , In the second case, there is an error in bit
position number 1 became it changed h m 0 to 1. The third case shows an error in bit posi-
tim 5, with a change from 1 to 0. Evaluating the XOR of the corresponding bits, we determine
the 4 check bits to be as follows:

C8 c4 c2 Cl
For no mr: 0 0 0 0
With error in bit 1 : 0 0 0 1
With error in bit 5: 0 1 0 1

298 Chapter 7 Memory and Programmabk Logic

Thus, for no e m , we have C = 0000, with an error in bit 1, we obtain C = 0001; and with
an error in bit 5, we get C = 0101. When the binaty n u m b Cis not equal to 0000. it gives
the position of the bit in error, The error can be corrected by complementing the corresponding
bit. Note that an error can occur in the data word or in w e of the parity bits.

The Hamming code can beused for data words of any length. In general, the Hamming cade
consists of k check bits and n data bits, for a total of n + k bits. The syndrome value C consists
of k bits and has a range of zk values between 0 and zk - 1. One of these values, usually zero,
is used to indicate that no error was detected, leaving 2k - 1 vah~es to indicate which of the
n + k bits was in error. Each of these 2k - 1 values can lx used to uniquely describe a bit in
error. Therefore, the range of k must be equal to or greater than n + k. giving the relarionship

Solving for n in terms of k, we obtain

This relationship gives a formuIa for establishing the number of data bits that can be used in
conjunction with k check bits. For example, when k = 3, the number of data bits that can be
usedisn 5 (23 - 1 - 3) = 4.Fork = 4, w e h a ~ e 2 ~ - f - 4 = 11,givingn I 11.The
d a t ~ word may be Iess than 11 bits, but must have at least 5 bits; otherwise, ody 3 check bits
will be needed. This justifies the use of 4 check bits for the 8 data bits in the previous exam-
pIe. Ranges of n for d o u s values of k are listed in Table 7.2,

The puping of bits for parity generation and checking can be dekmhed from a list of the
binary numbers from 0 through 2k - 1 . The least significant bit is a 1 in the binary numbers 1,3,
5,7, and so on. The second significant bit is a 1 in the binary n u m h 2,3,6,7, and so on. Com-
paring these numbers with the bit positions used in generating and checkjng p&y bits in the Ham-
ming code, we note the relationship between the bit groupings in the code and the position of the
1-bits in the binary count sequence. Note that each group of bits starts with a number that is a
power of 2 1,2,4,8, 16, etc. These numbers are also the position numbers for the parity bits,

Single-Emr Correction, Double-Ermr Detection
The Hamming code can detect and cmect only a single error. By adding another parity bit to
the coded word, tbe Hamming code can be used to correct a single m r and detect double
errors. If we include this additional parity bit, then the previous 12-bi t coded word kames
001 11001 0100fi3, where fi3 is evaluated from the exclusive-OR of the other 12 bits. This

tabla 7.2
RangedhtaBIErIbrkChdElts

Number of Check Blts, k Range of Data Bitr, n

3 2 4
4 5-11
5 12-26
6 27-57
7 58-120

Section 7.5 Read-only Memory 299

produces the 13-bit word 0011100101M31 (even parity). When the 13-bit word is read from
memory, the check bits are evaluated, as is the parity P over the entire 13 bits. If P = 0, the
parity is correct (even parity), but if P = 1, then the parity over the 13 bits is incorrect (odd
parity]. The following four cases can arise:

If C = 0 and P = 0, no error occurred.

If C # 0 and P = 1, a single error occurred that can be corrected.

If C # 0 and P = 0, a double error occurred that is detected, but that cannot be comted.

If C = 0 and P = 1, m error occurred in the P13 bit.

This scheme may detect more than two errors, but is not guaranteed to detect all such errors.
Integrated circuits use a modified Hamming code to generate and check parity bits for

single-error correction and double-error detection. The modified Hamming code uses a
more efficient parity configuration that balances the number of bits used to calculate the
XOR operation. A typical integrated circuit that uses an 8-bit data word and a 5-bit check
word is IC type 74637. Other integrated circuits are available for data words of 16 and 32
bits. These circuits can be used in conjunction with a memory unit to correct a singIe error
or detect double errors during write and read operations.

7.5 READ-ONLY MEMORY

A ROM is essentially a memory device in which permanent binary information is stored. The
binary information must be specified by the designer and is then embedded in the unit to form
the required interconnectionpattern. Once the pattern is established, it stays within the unit even
when power is turned off and on again.

A block diagram of a ROM consisting of k inputs and n outputs is shown in Fig, 7.9. The in-
puts provide the address for memory, and the outputs give the data bits of the stored word that is
selected by the address. The number of words in a ROM is demmined from the fact that k address
input h e s are needed to specify 2k words. Note that ROM does not have data inputs, because it
does not have a write operation. Inregrated circuit ROM chips have one or more enable inputs and
sometimes come with three-state outputs to facilitate the construction of large arrays of ROM,

Consider, for example, a 32 X 8 ROM. The unit consists of 32 words of 8 bits each. There
are five input lines that form the binary numbers from 0 through 31 for the address. Figure 7.10
shows the internal logic construction of this ROM. The five inputs are decoded into 32 distinct
outputs by means of a 5 X 32 decoder. Each output of the decoder represents a memory address.

k inputs (address) n outputs (data)

FK;URE 7.9
ROM block dlagrsm

The 32 outputs of the decoder are connected to each of the eight OR gates. The diagram shows
the array logic convention used in complex circuits. (See Fig. 6.1 .) Each OR garc must be con-
s i d e d as having 32 inputs. Each output of the decoder is caum3d &o m e of the inputs of each
OR we, Since each OR gate has 32 input connections and there arc 8 OR gares, the ROM con-
tains 32 X 8 = 256 internal connections. In general, a 2k X n ROM will have m internal
k X 2k dcEOdet and n OR gates. Each OR gak has inputs, which are connected to each of
the outputs of the decoder.

The 256 intersections in Fig. 7.10 are progmmable. A programmable connection between
two lines is logically equivalent to a switch that can be altered to be e i b closed (nmeaniag that
the two hes are connected) or open (meaning that the two lines arc disconnected). The pro-
grammable intersection between two lines is sometimes called a cmsspointnt Various phy sicd
devices are used to implement crosspoint switches. One of the simplest technologies employs
a fuse that normally connects the two points, but is o p e d or "blown" by the application of
a high-voltage pulse into the fusa

The i n t d binary storage of a ROM is spacified by a truth table that shows the word con-
tent in each address. For example, the content of a 32 X 8 ROM may be specified with a truth
table similar to the one shown in Table 7.3. The truth table shows the five inputs under which
are listed all 32 addresses. Each address stores a word of 8 bits, wbich is listed in rhe outputs
columns. The table shows only the frrst four and the last four words in tbe ROM. The complete
table must include the list of dl 32 words,

The hadware produce that progums the ROM blows fuse W in accordance with a
given mth table. For example, pm-g the ROM acmdhg to the lruth table given by
Table 7.3 results in the canfiguration shown in Fig. 7, l I . Every 0 listed in the mth table

Section 7.5 Read-Only Memory 301

Table 7.3
ROM Truth Tubie (Partial)

Inputs atpa

b

11

h

13

4

AT & As & da & Ao

HCUE 7.1 1
Programming the ROM a d t n g to Tabk 7.3

specifies the absence of a connection, and every 1 listed spacifies a path that is obtained by a
connection. For example, the table specifies the eight-bit word 101 10010 for pemment star-
age a! address 3. The four O's in the word are programmed by blowing the fuse Ws between
output 3 of the decoder and the inputs ofthe ORgates associated with outputs A6, A3, A2, and
Ao. The four 1's in the word are m k e d with a X to denote a temporary connection, in place
of a dot used far a permanent connection in logic diagrams. When the input of the ROM is
000 11, all the outputs of the decoder are 0 except for output 3, which is at logic 1. The signal

302 Chapter 7 Memory and Programmable Logk

equivalent to lode 1 at decoder output 3 propagates through the connections to the OR gate out-
puts of A7, A5, Ad, and A 1. The other four outputs remain at 0. The result is that rbe stored word
101 10010 is applied to the eight data outputs,

In Section 4.9, it was shown that a decoder generates the 2k minterms of the k input variables.
By inserting OR gates to sum the r n i n t m s of Boolean functions, we were able to generate any
desired combinational circuit. The ROM is essentially a device that includes both the decder
and the OR gates within a single device to form a mintem generator. By choosing connections
for those minterms which are included in the function, the ROM outputs can be progammed
to represent the Boolean functions of the output variables in a combinational circuit.

The internal operation of a ROM can be interpmed in two ways. The fmt interpretation ir that
of a memory unit that contains a fixed pattern of stored words. The second i n w o n is that of
a unit which implements a combinational circuit. From this pint of view, each output t e a is
considered separately as the output of a Boolean function expressed as a sum of mint-. For
example. the ROM of Fig. 7.11 may be considered to be a combimonal circuit with eight outputs,
each a function of the five input variables. Output A7 can be expressed in sum of mint- as

A7(14, 13, f2,11,10) = z(0, 2, 3, . . , 29)

(The three dots represent minterms 4 through 27, which are not specified in the figure.) A con-
nection marked with X in the figure produces a rninterm for the sum. All other crosspints
are not connected and are not included in the sum.

In practice, when a combinational circuit is designed by means of a ROM. it is not neces-
sary to design the logic or to show the internai gate connections inside the unit. All that the de-
signer has to do is specify the particular ROM by its IC number and provide the applichle rmth
table. The mth table gives all the information for programming the ROM. No internal logic
diagram is needed to accompany the h t b table,

Design a combinational circuit using a ROM. The circuit accepts a three-bit number and out-
puts a binary number equal to the square of the input number.

The first step is to derive the truth table of the combinational circuit. In most cases. this is
all that is needed, In other cases, we can use a partial truth table for the ROM by u- cer-
tain properties in the output variables. Table 7.4 is the truth table for the combinational circuit.
Three inputs and six outputs are n d e d to accommodate all possible binary numbers. We note
that output Bo is always equal to input AD, SO there is no need to generate Bo with a ROM,
since it is equal to an input variable. Moreover, output B1 is always 0, so this output is a h u w n
constant We actually need to generate only four outputs with the ROM; the other two are read-
ily obtained. The minimum size of ROM needed must have three inputs and four outputs. Three
inputs specify eight words, so the ROM must be of size 8 X 4. The ROM implemenmtion is
shown in Fig. 7.12. The three inputs specify eight words of four bits each. The truth table in
Fig. 7.12@) specifies the information needed for programming the ROM. The blmk diagram

Sectlon 7.5 Read-Only Memory 303

Table 7.4
Tmth Tobk fw Clrruit of Example 7.1

Inputs Outputs

Decimal

(a) Block diagram

FIGURE 7.12
ROM lmplementatlon of Exampk 7.1

(b) ROM truth table

of Fig. 7.12(a) shows the required connections of the combinational circuit.

The required paths in a ROM may be programmed in four different ways. The first is called m k
programming and is done by the semiconductor company during the last fabrication process of
the unit. The pmedure for fabricating a ROM requires that the customer fill out the truth table
he or she wishes the ROM to satisfy. The truth table may be submitted in a special form pro-
vided by the manufacturer or in a specified format on a computer output medium. The manu-
facturer makes the corresponding mask for the paths to produce the 1's and 0's according to the
customer's truth table. This procedure is costly because the vendor charges the customer a ape-
cial fee for custom masking the particular ROM. For this reason, mask programming is ec*
nomical only if a large quantity of the same ROM configuration is to be ordered.

For small quantities, it is more economical to use a second type of ROM called
programmable read-only memory, or PROM. When ordered, PROM units contain all the fuses
intact, giving all 1's in the bits of the stored words. The fuses in the PROM are blown by the

304 Chapter 7 Memory and Programmable Logic

application of a hgh-voltage pulse to the device through a special pin. A blown fuse defines a bi-
nary 0 state and an intact fuse gives a binary 1 state. This procedure allows the user to program
the PROM in the laboratory to achieve the desired relationship between input addresses and
stored words. Special instruments called PROM programmers are ava~lable mmmercially to fa-
cilitate the procedure. In any case, all procedures for programming ROMs are hardware pme-
dures, even though the word programming is used.

The hardware procedure for programming ROMs or PROMS is irreversible. and once p r e
grammed, the fixed pattern is permanent and cannot be altered. Once a bit pattern has been es-
tablished, the unit must be discarded if the bit pattern is to be changed. A third type of ROM
is the erasable PROM, or EPROM, which can be restruchmd to the initial state even though
it has been programmed previously. When the EPROM is p W under a v i a l ultraviolet light
for a gven length of time, the shortwave radiation discharges the internal floating gates that
serve as the programmed connections. After erasure, the EPROM renulls to its initial state and
can be reprogrammed to a new set of values.

The fourth type of ROM is the electrically erasable PROM (EEPROM or E'PROM). This
device is like the EPROM, except that the previously programmed connections can be erased
with an electrical signal instead of ultraviolet light. The advantage is that the device can be
erased without removing it from its socket.

Flash memory devices are similar to EEPROMs, but have additional built-in circuihy to
selectively pragram and erase the device in-circuit, without the need for a special programmer.
They have widespread application in modern technology in cell phones, digital camwas. set-
top boxes, digital TV, telecommunications, nonvolatile data storage, and microcontrollers.
Their low consumption of power makes them an attractive storage medium for laptop and note-
book computers. Flash memories incorporate additional circuitry, too, allowing simultaneous
erasing of blocks of memory, for example, of size 16 Kbytes to 64 Kbytes. Like EEPROMs,
flash memories are subject to fatigue, typically having about lo5 block erase cycles.

Combinational PLDs

The PROM is a combinational programmable logic device (PLD)-an integrated circuit wirh
programmable gates divided into an AND array and an OR a r q to provide an k % i R sum-
of-product implementation, There are three major types of combinational PLDs differing in
the placement of the progrmble connections in the m R m y . figure 7.13 shows the
dguratiw of the three PLDs. The PROM has a fixed AND may construcred as a d a d e r
and a programmable OR array, The programmable OR gatm implement the Boolean functions
in sum-of-mintems form. The PAL has a programmable AND array and a &xed OR array, The
AND gates are programmed to provide the product terms for the Boolean functions, which are
logically mmmed in each OR gate. The most flexible PLD is the PLA, in which both the ANI3
and OR arrays can be programmed, The product terms in the AND anay may be shared by any
OR gate to provide the required sum-of-pducts implementation. The names PAL and PLA
emerged h m different vendors during the development of PLDs. The i m p h t a i i o n of com-
binational circuits with PROM was demonsbated in this d o n . The design of combinational
circuits with PLA and PAL is presented in the next two sections.

Sectlam 7.5 Programmable Logk Array

{a) Programmable read-only memory (PROM)

(b) Programmable may logic (PAL)

(c) Programmable logic array (PLA)

FIGURE 7.1 3
Sksic tonfigurnlion of three PLDs

7.6 P R O G R A M M A B L E LOGIC ARRAY

The PLA is similar in concept to the PROM, except that the PLA does not provide full decod-
ing of the variables stnd does not generate all the mintwms, The decoder is replaced by an m y
of AND gates that can be programmed to generate any product term of the input variables.
The product terms are then connected to OR gates to provide the sum of products for the re-
quired Boolean functions,

The internal logic of a PLA with three inputs and two outputs is shown in Fig. 7,14. Such a
circuit is too small to be useful commercially, but is presented here to demonstrate the typical
logic coaiguration of a PLA, The diagram uses the array logic graphic symbols for complex cir-
cuits. Each input goes through a buffer-inverter combination, shown in the diagram with a com-
pmite graphic symbol, that has both the true and complement outputs. Each input and its
complement are connected to the inputs of each AND gate, as indicated by the intersections be-
tween the vertical and horizontal lines. The outputs of the AND gates are connected to the in-
puts of each OR gate. The output of the OR gate goes to an XOR gate, where th other input
can be programmed to receive a signal equal to either logic 1 or logic 0, The output is inverted
wben the XOR input is connected to 1 (since x $1 = x ') . The output does not change when
the XOR input is connected to 0 (since x $ 0 = x) . The particular Boolean functions imple-
mented in the PLA of Fig. 7.14 are

Fl = AB' + AC + A'BC'
F2 = (AC + BC)'

Chapter 7 Memory and Prugramde Logic

ntum 7.14
FLA wlth three Inputs, fow produa t%mn, and two

The product terms generated in each AND gate are listed along the output of the gate in the
diagram. The product term is determined from the inputs whose cmspoints are connected and
marked with a X. The output of m OR gate gives the logical sum of the s e l d product terms.
The output may be complemented or left in its true form, depending on the logic king m&zd

The fuse map of a PLA can be specified in a tabular form. For example, &e propmmirg
table that specif~s the PLA of Fig. 7.14 is listed in Table 7.5. The PLA p r m table con-
sists of three sections. The first section lists the product terms numerically. The second section
specXies the required paths between inputs and AND gates. The third section s- the
paths between the AND and OR gates. For each outpat variable, we may have a T (fm m) or
C (for complement) for p r o ~ ~ g the XOR gate. The p h c t terms listed an the left are
not part of the table; they are included for reference d y . For each pmduct term, the inputs are
marked with 1,0, or - (dash). If a variable in the product tam appears in the form in which
it is true, the corresponding input variable is marked with a 1. If it appears complemented, the
corresponding input variable is marked with a 0. If the variable is absen~ h m the product
term, it is maked with a dash.

S,$@p,? .?&- ~~--rarnmhle Logk Array 307

Table 7.5
PLA Pmgmmmhg Table

outputs
Inputs (T) (C)

ProdudTerrn A 8 C FI F2

AB' 1 1 0 - 1 -
AC 2 1 - 1 1 1
BC 3 - I 1 - 1
A'BC ' 4 0 1 0 1 -

Note: See text for meanings of dashes.

The paths between the inputs and the AND gates are specified under the column head "In-
puts" in the progr-g table. A 1 in the input column specifies a connection from the input
variable to the AND gate. A 0 in the input column specifies a connection from the comple-
ment of the variable to the input of the AND gate. A dash specifies a blown fuse in both the
input variable and its complement. It is assumed that an open terminal in the input of an AND
gate behaves like a 1.

The paths between the AND and OR gates are specified under the column head "Outputs."
The output variables are marked with 1 ' s for those product terms which are included in the func-
tion. Each product term that has a 1 in the output column requires a path from the output of the
AND gate to the input of the OR gate. Those marked with a dash specify a blown fuse, It is as-
sumed that an open terminal in the input of an OR gate behaves like a 0. Finally, aT (true) out-
put dictates that the other input of the corresponding XOR gate be connected to 0, and a C
(complement) specifies a connection to 1.

The size of a PLA is specified by the number of inputs, the number of product terms, and
the number of outputs. A typical integrated circuit PLA may have 16 inputs, 48 product terms,
and eight outputs. For n inputs, k product terms, and m outputs, the internal logic of the PLA
consists of n buffer-inverter gates, k AM3 gates, m OR gates, and n XOR gates. There are
2n X k connections between the inputs and the AND array, k X rn connections between the
AND and OR arrays, and m connections associated with the XOR gates.

In designing a digital system with a PLA, there is no need to show the internal connections
of the unit as was done in Fig. 7.14, All that is needed is a PLA programming table from which
the PLA can be programmed to supply the required logic. As with a ROM, the PLA may Ire mask
programmable or field programmable. With m k programming. the customer submits a PLA
program table to the manufacturer, This table is used by the vendor to produce a custom-made
PLA that has the required internal logic specified by the customer. A second type of PLA that
is available is the field-programmable logic array, or FPLA, which can be programmed by the
user by means of a commercial hardware programmer unit.
In implementing a cambinational circuit with a PLA, careful investigation must be under-

taken in order to reduce the number of distinct product terms, since a PLA has a finite number
of AND gates. This can be done by simplifying each Boolean function to a minimum numkr
of terms. The number of literals in a term is not important, since all the input variables are

308 Chapter 7 Memory and Programmable Logk

available anyway. Both the true value and the compiement of each fundon should be simpfi-
fied to see which one can be expressed with fewer product terms aad which one provides prd-
uct terms that are common to other functions.

EXAMPLE 7.2

Implement the following two Boolean functions with a PLA:

f i (A , B, C) = E(O,1,54)

F2(A, 3, C) = X(0,5 ,6 ,7)
The two functions are shpliFied in the maps of Fig. 7.15. Both the aut value and tht com-
plement of the functions arc simpMd hta sum-of-pducts foam. The combination that gives
the minimum number of product terms is

Fl = (AB + AC + BC)'

and
F2 = AB + AC + A'B'C'

This combination giva four distinct product terms: AB, AC, BC, and A'B'C'. The PLA pro-
m table for th combhation is shown in the figure. Note that output Fl is the true out-
put, even though a C is marked over it in the table. This is k u s e Fl is g e n d with an
W R circuit and is available at the output of the OR gate. The XOR gate complements the
function to produce the me Fl output.

PLA piogramminp: table

-rpn@ - W b (C) m - A B C Fl FL

AB 1 1 1 - 1 1
AC 2 1 - 1 1 1
BC 3 - 1 1 1 - - -
A'B'C' 4 0 0 0 - 1 C C - 7.15

S Q k f n b n t o ~ 7 . 2

The combinational circuit used in Example 7.2 is tcu simple for implementing with a PLA.
It was presented merely for purposes of A typical PLA has a large n u m b of inputa
d ~ u c t t e r m s . T h e s i m p ~ o n o f ~ ~ ~ ~ s o m a n y v a r i a b l e s g h o p r l d b e
c a a i e d o u t b y m e a n s o f c 0 m p u ~ ~ ~ m ~ T h e ~ ~ d c s i g n
program simplifies each fwaction and its aomplement to minimum number of temrs. 'X2ae p
pan then selects a minimum nlrmber of product terms that cover all W m s in the fwm in
wbich they are me or in their complemented form The FTA propmmiq table is then gmer-
atedmdthcrequiredfusemap o ~ ~ f u s t m a p i s appl iedtoan~progammer that
goes through the hardware pmdw of blowing the internal fuses in the in-d circuit.

'.. -

'Section 7.7 Progra'm'mable Array Loglc

7 .7 P R O G R A M M A B L E ARRAY LOGIC

Tbe PAL is a programmable logic device with a h d OR array and a programmabie AND array.
B~cause only the AND gates are programmable, the PAL is easier to program tban, but is not
as flexible as, tht PLA. Fqym 7.16 shows the logic configuration of a typ id PAL with four in-
puts a d four outputs. Each input has a be-inverter gate, and & output is geneaated by a
fixed OR gate. Them are fwr sections in the unit, each composed of an B R army that is
t h e wYe, the tenn used to indicate that there are h e progmmmble AND gates in each sec-
tion and one fixed OR gate. Each AND gate has 10 progrmmbIc input c-tions, shown in
the diagram by 10 vertical lines intersecting each horizontaI line. The hwizonta1 line symbol-
izes the multiple-input configuration of the A N gate. One of the outputs is connected to a
buffer-inverter gate and then fed back into two inputs of the AND gates,

Cornrnemial PAL devices contain more g&a than the one shown in Fig. 7.16. A typicai PAL
integrated circuit may have eight inputs, eight outputs, and eight sections, each consisting of an
eight-wide ANIFOR array. The output terminals are sometimes driven by three-state bufFers or
inverten.

In designing with a PAL, the Boolean functio~ls must be simplified to fit into each section.
Unlike ihe situation with a PLA, a product tena cannot be shared among two or more OR gales.
llmdme, tach function can be simpli&.d by itstlf, without regard to conrmon product terms.
The n u m b of product terms in each section is fixed, and if the n u m b of tenns in the func-
tion is too Iarge, it may be necessary to use two sectiow to implement one Boolean function.

As an example of using a PAL in the &sign of a combinational circuit, consider the following
Boolean functions, given in sum-of-mint- form:

Simplifying the four functions to a minimum number of terms results in the fobwing Boolean
fanctions:

x = A + BCD

y = A'B + CD + B'D'

z = ABC' + A'B'CD' + AC'D' + A'B'C'D

= w + AC'D' f A'B'C'D

Note that the function for z has four product terms. The logical sum of two of these terms is
equal to w. By using w, it is possible to reduce the number of terms fore from fout to h.
The PAL pxogmmdng tabk h s h i h to tbe one wed fw tha PLA, except tbat only the in-

puts of the AND gates need to be progsmmd, Table 7.6 lists the PAL programming table for
the four Boalem functions, The UbIe is divided into four sections with three product terms in

Chapter 7 Memory and Programmable Logic

AND gaks Inputs

FlCURE 7.16
PAL wlth four Inputs, four outputs, an$ a three-wide AND-OR s t r rcc tu~

Section 7,B Sequentla1 Programmable Devices 31 1

Table 7.6
PAL Progranuning Tabh

AND Inputs

Productterm A 8 C D w Outputs
- -.

1 1 1 0 - - w = ABC' + A'B'CD'
2 0 0 1 0 -

- - - A -

1 - - - - x = A f BCD - 1 1 1 -
- - - - -
0 1 - - - y = A'B + CD + B'D'

- - I 1 -
0 - 0 - - - - - 1 z = w + AC'D' + A'B'C'D

1 - 0 0 -
0 0 0 1 -

each, to conform with the PAL of Fig. 7.16. The first two sections need only two product terms
to implement the Boolean W o n . The last section, for output z, needs four e u c t terms.
Using the output from w, we can reduce the function to t h e terms.
The fuse map for the PAL as specified in the programming table is shown in Fig. 7.17, For

a& 1 or 0 in h e table, we rnsrrlr the corresponding intersection in the diagram with the sym-
bol for an jn?act fuse. For each dash, we mark the diagram with blown fuses in both the true
and complement inputs. If the AND gate is not used, we leave all its input fuses intact, Since
the cmmpwding input receives both the nw value and the complement of each input vari-
able, we have AA' = 0 and the output of the AND gate is always 0.
As with all PLDs, h e design with PALS is faciIitatcd by using computer-aided design tech-

niques. The blowing of internal fuses is a hardware prooadure h e with the help of special else-
tronic instruments.

7.8 SEQUENTIAL P R O G R A M M A B L E DEVICES
I Digital systems are designed with flip-flops and gatea, Since the combinationd PLD consists

of only gates, it is laacesmy to include external flipflops when they are used in the design. Se-
quential programmable &vim- iaclude both gates and flip-flop& In h i s way, the device can
be programmed to perform a variety of sequential-dmit functions, There are several types of
sequential programmable dovi~es available commercially, and each device has vendor-specific
ymiauts within each type. The internal logic of these &vices is tm complex to be shown here.
Therefore, we will describe three major types without going into their dmiM cmstruction:

1. Sequential (or simple) programmable logic device (SPLD)
2. Complex propmmble lo@ device (BLD)
3, Field-programmab1e gate m y (FPGA)

Chapter 7 Memory and Programmable Logic

AND gates inputs

X Fuseinracr

+ Fuse blown

A A' B' B' C C' D D' w w'

Flbm 7.17
Fuse map fm ?M &I sprcfffed in Table 7J

Mirn'7.8 Sequential Programmable Oevices 3'1 3

The sequential PLD is sometimes referred to as a simple PLD to Merentiate it f m the com-
plex PW). The SPLD includes fip-flops, in addition to the A N B O R array, within the integrated
circuit chip. The result is a sequential circuit as shown ia Fig. 7.18. A PAL or PLA is modified
by including a number of flipflop connected to form a register. The circuit outputs can be taken
from the OR gates or from the outputs of the flip-flops. Additional programmable connections
are available to include the flip-flap outputs in the product terms formed with the AND array.
The flip-flops may be of the D or the JK type.

The first programmable device developed tp support sequential circuit implementation is
the field-programmable logic sequencer (FPLS). A typical FPLS is organized around a PLA
with several outputs driving flip-flops. The flip-flops are flexible in that they can be pro-
grammed to operate as either the JK or the D type. The FPLS did not succeed commercially,
because it has too many programmable connections. The configuration mostly used in an
SPLD is the combinational, PAL together with D flip-flops. A PAL that incIudes flip-flops is
referred lo as a egktered PAL, to signify that the device contains flip-flops in addition to the
A N D 4 R m y . Each section of an SPLD is called a mactvcetl, which is a circuit that contains
a sum-of-products combinational logic function and an optional flipflop. We will assume an
ANPOR sum-of-products function, but in practice, it can be any one of the two-level im-
plementations presented in Section 3.7.

F i p 7.19 shows the logic of a basic macrocell. The ANM3R m y is the same as in the
combinational PAL shown in Fig. 7.16. The output is driven by an edge-triggered D flip-flop
connected to a common clock input and changes state on a clock edge. The output of the flip-
flop is connected to a threes- buffer (or invetter) controled by an output-enable signal
marked in the diagmm as OE. The output of the flipflop is fed back into one of the inputs of
the programmabe AND gates to provide the present-state condition for the sequentid circuit.
A typical SPLD has from 8 to 10 macrocells within one IC package. All the flip-flops are canM
nected to the common CLK input, and all three-state buffers are controlled by the OE input.

In addition to progrmmhg the AND array, a macrocell may have 0th~ pro-g featms.
Typical programming options include the ability to either use or bypass the flipflop, the selection
of clock edge polarity, the selection of preset and clear for the ~ g i s t e r , and the selection of the lme
value or complement of an output. An XOR gate is used to program a ~ c o m p h m t condhi~1.
Multiplexers select between two or fm distinct pahs by programming the selection inputs.

The design of a digital system using PL;Ds often requires the connection of several devices
to produce the complete ~ p ~ c a t i o n . For this type of application, it is more economical to use
a complex pmpnmable logic device (CPLD), which is a c o l ~ o n of individual PLDs on a
single integrated circuit. A programmable interconnection structure allows the PLDs to be cun-
nected to each other in the same way that can be done with individual PLDs.

FIGURE 7.19
Baslc rna~rc~etl logic

FIGURE 7-
Genefat CPLD configuration

Figure 7.20 shows the general configuration of a CPLD. The device consists of multiple
PLDs interconnected through a pgmmmable switch matrix. The input- W) b l o b pre
vide the connections to the IC pins. Each I/0 pin is driven by a thestate M e r and can be
programmed to act as input or output. The switch matrix receiv~rl inpufs fmm the UO b l d and

Section 7.8 Sequential Programmable Devices 31 5

directs them to the individual macrocells. Similarly, selected outputs from macrocells are sent
to the outputs as needed. Each PLD typically contains from 8 to 16 macroceIls, usually fully
connected. If a macrocell has unused product terms, they can be used by other nearby macro-
cells. In some cases the macrocell flip-flop is programmed to act as a D, JK, or T flip-flop.

Different rnanufactmm have taken different approaches to the general architecture of CPLDs.
Areas in which they differ include the individual PLDs (sometimes called function blocks), the
trpe of mamcells, the VO b l ~ k s , and the programmable interconnection structure. The best way
to investigate a vendor-specific device is to look at the manufacturer's literature.

The basic component used in VLSI design is the gate away, which consists of a pattern of
gates, fabricated in an area of silicon, that is repeated thousands of times until the entire chip is cov-
ered with gates. Arrays of m e thousand to several hundred thousand gates are fabricated within a
single IC chip, depending on the technology used. The design with gate arrays requires that the cus-
tomer provide the manufacturer the desired interconnection pattern. The first few levels of the fab-
ricatirm prrxess are common and independent of the final logic function. A d d i t i d fabrication steps
are required to intermmmt the gates according to the specifations given by the designer.

A field-programmable gate array (FPGA) is a VLSI circuit that can be programmed at the
user's location. A typical FPGA consists of an array of hundreds or thousands of logic blocks,
surrounded by programmable input and output blocks and connected together via program-
mable interconnections. There is a wide variety of internal ~ o ~ g u r a t i o n s within this group of
devices. The performance of each type of device depends on the circuit contained in its logic
blocks and the efficiency of its programmed interconnections.

A typical FPGA logic blwk consists of lookup tables, multiplexers, gates, and flip-flops. A
lookup table is a truth table stored in an SRAM and provides the combinational circuit functions
for the logic block These functions are realized h m the lookup table, in the same way that com-
binational circuit functions are implemented with ROM, as described in Section 7.5. For exam-
ple, a 16 X 2 SRAM can store the n t h table of a combinational circuit that has four inputs and
two outputs, The combinational logic section, along with a number of programmable multiplex-
ers, is used to configure the input equations for the flip-flop and the output of the logic block.

The advantage of using RAM instead of ROM to store the truth table is that the table can
be programmed by writing into memory, The disadvantage is that the memory is volatile and
presents the need for the lookup table's content to be reloaded in the event that power is dis-
rupted. The program can be downloaded either from a host computer or from an onboard
PROM. The program remains in SRAM until the FPGA is reprogrammed or the power is turned
off. The device must be reprogrammed every time power is turned on. The ability to reprogram
the FPGA can serve a variety of applications by using different logic implementations in the
program.

The design with PLD, CPLD, or FPGA requires extensive computer-aided design (CAD)
tools to facilitate the synthesis procedure. Among the tools that are available are schematic
e n q packages and hardware description languages (HDLs), such as ABEL, VHDL, and Ver-
ilog. Synthesis tools are available that allocate, configure, and connect logic blocks to match
a high-level design description written in HDL. As m example of CMOS FPGA technology,
we will discuss the Xilinx PPGA. '
See www.Alter~com for an alternative CMOS FPGA architecture.

Chapter 7 Memory and Programmable Loglc

Xiljnx FPCAs

Xilinx launched the world's first commercial FPGA in 1985, with the vintage XC2000 device
family? The XC3000 and XC4000 families soon followed, setting the stage for today's Spar-
tanTM, and VirtexTM device families. Each evolution of devices brought improvements in den-
sity, performance, power consumption, voltage levels, pin counts, and functionality. For
example, the Spartan family of devices initially offered a maximum of 4UK system gates, but
today's Spartan3E offers 1.6M gates plus block RAM.

Etastc Xilinx Architecture

The basic architecture of Spartan and earlier device families consists of an may of conf~g-
urable logic blocks (CLBs), a variety of local and global routing resources, and input-output
(ID) blocks (IOBs), programmable I/O buffers, and a SRAM-based cwfigmhon memory, as
shown in Fig. 7.2 1.

Horizontal
long line

WURE 7.21
Bask architecture of Xillnx Spartan and predtxessor devices

2 ~ e e www.Xilinx.com for upto-date i d d o n about Xilinx products.

Section 7.8 Squentid Programmable Devlcer 31 7

'infisurabk Loglc Block (CLB)

Each CLB consists of a programmable lwkup table, multiplexers, registers, and paths for con-
trol signals, as shown in Fig. 7.22. Two of the function generators (?? and G) of the lookup
table can generate any arbitrary function of four inputs, and the third (H) can generate any
Boolean function of three inputs. The H-function block can get its inputs from the F and G
lookup tables or from external inputs. The three function generators can be programmed to
generate (1) three different functions of three independent sets of variables (two with four in-
puts and one with three i n p u t ~ n e function must be registered within the CLB), (2) an arbi-
trary function of five variables, (3) an arbitrary function of four variables together with some
functions of six variables, and (4) some functions of nine variables.

Each CLB has two storage devices that can be configured as edge-triggered flip-flops with
a common clock, or, in the XC4000X, they can be configured as flip-flops or as transparent
latches with a common clock (programmed for either edge and separately invertible) and an
enable. The storage elements can get their inputs from the function generators or from the Din
input. The other element can get an external input from the HI input. The function generators
can also drive two outputs (X and Y) directly and independently of the outputs of the storage
eIements. A11 of these outputs can be connected to the interconnect network. The storage ele-
ments are driven by a global setlreset during power-up; the global setheset is programmed to
match the programming of the local S/R control for a given storage element.

blstributd RAM
The three function generatow within a CLB can be wed as either a 16 X 2 dual-port RAM or a
32 X 1 singleport RAM. The XC4W &vices do nat have block RAM, but a group of their CLBs
can form an array of memory, Spartan devices have block RAM in addition to distributed W.

hterconnect Resources

A grid of switch matrices overlays the architecture of CLBs to provide general-purpose inter-
connect for branching and routing throughout the device. The interconnect has three types of
general-purpose interconnects: single-length lines, double-length lines, and long lines. A grid
of horizontal and vertical single-length lines connects an array of switch boxes that provide a
reduced number of connections between signal paths within each box, not a full crossbar switch.
Each CLB has a pair of three-state buffers that can drive signals onto the nearest horizontal lines
above or below the CLB.

Direct (dedicated) interconnect lines provide routing between adjacent vertical and hori-
zontal CLBs in the same column or row. These are relatively high speed local connections
through metal, but are not as fast as a hardwired metal connection because of the delay in-
curred by routing the signal paths through the transmission gates that configure the path. Di-
rect interconnect lines do not use the switch matrices, thus eliminating the &lay incurred on
paths going through a rnatrixn3

See Xilinx humentation for the pin-out conventions to establish local interco-ts between CLBs.

318 Chapter 7 Memory and ProgmmrMble Logle

Interconnect +!!+ path

#CUE 7.23
RAM cell contrdltmg a PIP transmlsslon 'gate

Double-length h e s kaverse the distance of two CLBs before entering a switch matrix, skip-
ping every other CLB. These lines provide a more efficient implementation of intemdiablength
oomections by eliminating a switch mabix from the path, thereby reducing the delay of the path.

Long lines span the entire array vertically and horizontally. They drive low-skew, high-fan-
out conml signals. Long vertical lines have a progarnmable splitter that segments the lines and
allows two independent routing channels spanning one-half of the array, but located in the
same column The routing resources are exploited automatically by the routing software. There
are eight low-skew global buffers for clack distribution.

The signaIs that drive long lines are buffered. Long lines can be driven by adjacent CLBs
or IOBs and may connect to three-state buffers that are available to CLBs. Long Iines provide
three-state buses within the architecture and implement wired-AND logic. Each horizontal
long line is driven by a three-state buffer and can be programmed to connect to a pull-up re-
sistor, which pulls the line to a logical 1 if no driver is asserted on the line.

The programmable interconnect resources of the device connect CLBs and IOBs, either dl-
rectly or through switch boxes. These resources consist of a grid of two layers of metal seg-
ments and programmable interconnect points (PIPS) within switch boxes. A PIP is a CMOS
transmission gate whose state (on or off) is determined by the content of a static RAM cell in
the programmable memory, as shown in Fig. 7,23. The connection is established when the
transmission gate is on (it., when a 1 is applied at the gate of the n-channel transistor), and a
0 is applied at the gate of the p-channel transistor. Thus, the device can be reprogrammed sim-
ply by changing the contents of the controUing memory cell.

The architecture of a PIP-based interconnection in a switch box is shown in Fig. 7,24,
wbich shows possible signal paths through a PIP. The configuration of CMOS transmission
gates determines the connection between a horizontal line and the opposite horizontal line
and between the vertical lines at the connection. Each switch matrix PIP requires six pass
transistors to establish full connectivity.

320 Chapter 7 Memory and ProgmknmaMe bgk

WlmE 7.24
Circuit for a programmable PIP

I/O Black {IOB)

Each programmable IIO pin has a programmable IOB having buffers for c o ~ b i l i t y with TTL
and CMOS signal levels. Figure 7.25 shows a simplified schematic for a programmable IOB.
It can be used as an input, an output, or a bidirectional port. An IOB that is c o n f i p d as an
input can have direct, latched, or registed input. In an output confguration, !he IOB bas di-
rect or registered output. The output buffer of an IOB has skew and slew control. The reds-
ters available to the input and output path of an IOB are driven by separate. invertible clocks.
There is a global &reset.

Internal delay elements compensate for the delay inducd when a cluck signal passes through
a global buffer before reaching an IOB, This strategy eliminates the hold condition on the data
at an external pin. The three-state output of an IOB puts the output buffer in a high-im@nce
state. The output and the enable for the output can be inverted. The slew rate of the output
buffer can be controlled to minimize transients on the power bus when noncritical signals are
switched. The IOB pin can be programmed for pull-up or pullawn to prevent needless power
cmsumption and noise.

The devices have embedded logic to support the IEEE 1149.1 (JTAG) boundary scan stan-
dard. There is an on-chip test access port (TAP) controller, and the I/0 cells can be configured
as a shift register. Under testing, the device can be checked to verify that all the pins on a PC
board are ~ 0 ~ e c t e d and operate properly by creating a sesial chain of all of the I/O pins of the
chips on the board. A master three-state control signal puts all of the IOBs in high-impedance
mode for board testing.

Spartan chips can accommodate emkdded soft cares, and their on-chip dstniuted, dual-prt,
synchronous RAM (SelactRAM) can be used to implement fmt-in, first-out register fles

7.8 Sequential Programmable Devices

WCLK

FIGURE 7.26
Distributed RAM ceU formed from a lookup table

(FIFOs), shift registers, and scratchpad memories. The blocks can be cascaded to any width and
depth and located anywhere in the part, but their use reduces the CLBs available for logic.
Figure 7.26 displays the structure of the on-chip RAM that is formed by programming a lookup

Chapter 7 Memory and Programmable toqlc

table to implement a sbgbpoxt RAM with synchronous and asynchronous read Each
C L B c a n b e ~ a s a 1 6 X 2or32 X lmemory.

Dud-port RAMS are emulated in a Spartan device by the struetm shown in F'i. 7.27, which
has a single (common) write port and two asynchronous red ports. A CLB can form a mem-
oryhaviagamaxhumsizeof 16 X 1.

Spartan XL chips am a further enhancement of Spartan chips, deing hghm sped and density
(40,000 sysfangsfcs, q p x j m w 4MO of- musable1."dm*, - . .
nmmq~~hcbh~tablesofthedevkscanimplement2 Mafudonsofninpurs .

~ h e ~ n u m b t r o f l o g i c ~ a t w f w a ~ i l i n x ~ ~ ~ i g e n ~ ~ ~ o f t b a m g x i r m t m r m m b w o f l o g i e ~ m * r
wuld b reallzed in I design consl~ting of only loglc functions (no mmay). Logic mpacity is txpntised in
o f ~ a m b e r d t w o - i n p u t N A N D ~ t h r r t d b e ~ m i m p l o m m t ~ ~ u l l m k r p n d r y p e o f l ~
hlka iCW App. More).

2630% of CLBs as RAM,
I bgk ccU = Winput lwkup table + fUp-flop.

Tht XL series is targeted for applications for which low cost, low power, low packaging,
and Iow test cost are imprkmt factors constraining the design. Spartan XL devices offer up to
SO-MHz system performance, depending on the number of cascaded lookup tables, which re-
duce performance by inlducing longer paths. Table 7.7 presents significant attributes of de-
vices in the Spartan XL family.

The architecture of the Spartern XL and earlier devices consists of an m y of CLB tiles
mingled within an array of swish matrices, surrounded by a perimeter of IOBs. These de-
vices support only distributed memory, whose use reducas the number of CLBs that could
be used for logic. The relatively small amount of on-chip memory limits the devices to ap-
plications in which operations with off-chip memory devices do not compromise perform-
ance objectives. Beginning with the Spartan II series, Xilinx supported configurable
embedded block memory, as well as distributed memory in a new architecture.

XlHnx Spartan II FPCAs

Aside from improvements in speed (200-MHz YO switching frequency), density (up to 200,000
system gates) and operating voltage (2.5 V), four other features distinguish the Spartan U
devices from the Spartan devices: (1) on-chip block memory, (2) a novel architecture, (3) sup
port for multiple XIO standards, and (4) delay locked loopsm5

The Spaaaa II device family, manufxmed in 0.2240.18-pm CMOS technology with six
layers of metal for interconnect, h m r p m m co&whle bldc memory in *on to the dis-
tributed memory of the pevious gemations of devices, d the block memory does not redwe
the amount of logic or distributed memory that is available for the application, A luge on-chip
menmry can improve system perf- by eliminating m reducing the need to access offchip
storage*

S m II device do not s u m low-voltage difftrential signaling (LVDS) w low-voltage @ve emi-d
logic (LVPEU) Yo standards.

Chapter 7 Memory and P r o g r ~ b l e toglc

Reliable clock distribution is the key to the synchronous optmion of high-speed digital cir-
cuits. If the clock signal arrives at different times at different parts of a circuit, the device may
fad to operate correctly. Clock skew rrertoces the available time budget of a k n i t by ltngthm-
ing the 8emp time at qisters. It can also shorten the effective hold-* margin of a *flop
in a shift register and cause the register to shift incorrectly. At high c h k ~ c i c s Ishoner
clock periods), the effect of skew is mm sqnihnt because it npesmts a larger hction of
tbe clock cycle time. Bufferad clock are. commonly used to minimize clock skew in FPGAs.
Xilinx provides all-digital delay-1- loops {DLLs) for clmk synchonidon or manage-
ment in high-speed circuits, r lUs e h n h e the clock distribution &lay d provide hqutncy
multipliers, frequency dividers, and clock minors.

Spartan II devices are suitable for applications such as implementing the glue logic of a
video capture system and the glue logic of an ISDN modem. Device atuibutes are ed
in Table 7.8, and the evolution of tEChIWl~gy in the Spartan series is evidwt in tbe data in
Table 7.9.

'2&mofCmftasRAM
* 1 Logic CBU = four-input lookup tablt + apflop.

The top-level tiled architecture of the Spartan I1 device, shown in Fig. 7.28, marks a new
organization structure of the Xilinx parts. Each of four quadrants of CLB s is supported by a
DLL and is flanked by a 4,096-bit block6 of RAM, and the periphery of the chip is lined
with IOB s.

Each CLB contains four logic cells, organized as a pair of slices. Each logic cell, shown
in Fig. 7.29. has a four-input lookup table, logic for cany and control, and a D-type flip-flop.
The CLB contains additional logic for configuring functions of five or six inputs.

The Spartan I1 part family provides the flexibility and capacity of an on-chip block RAM;
in addition, each lookup table can be configured as a 16 X 1 R4M (distributed), and the pair
of lookup tables in a logic cell can be configured as a 16 X 2 bit RAM or a 32 X 1 bit
RAM.

The 103s of the Spartan I1 family are individually programmable to support the refer-
ence, output voltage, and termination voltages of a variety of high-speed memory and bus

Parts are available with up to 14 blocks (56K bits).

326 Chapter 7 Memory and Programmable Logk

hgic Cell

r

Carrg
and

c.ontr01

Carry
and

Control
Logic

- I I
CLK

L______________

standards. (See Fig. 7.30.) Each IOB has three registers that can function as D-type flip-
flops or as level-sensitive latches. One register (TFF) can be used to register the signal
that (synchronously) controls the programmable output buffer. A second register (OFF)
can be programmed to register a signal from the internal logic. (Alternatively, a signal from
the internal logic can pass directly to the output buffer.) The third device can register the
signal coming from the U 0 pad. (Alternatively, this signal can pass directly to the internal

Section 7.8 Sequential Programmable Devices 327

R C W 7.30
Spartan ll l O l

logic.) A common clock drives each register, but each has an independent clock enable. A
programmable delay element on the input path can be used to eliminate the pad-to-pad
hold time.

The Vutex device series7 is the leading edge of Xilinx technology. This family of devices ad-
dresses four key factors that influence the solution to complex system-level and system-on-chip
&signs: (1) the level of integration, (2) the amount of embedded memory, (3) performance
(timing), and (4) subsystem interfaces. The family targets applications requiring a balance of
high-performance logic, serial connectivity, signal processing, and embedded processing (e.g.,
wireless communications). Process rules for leading-edge Viaex parts stand at 65 nm, with a

' Vlitex, Viaex-a TI Platform. II-Roko X, and Nrtex-5 Multi-Platform F K A .
- . . ,

1-V operating voltage. The rules allow up to 330,000 logic c e b and over 200.000 internal
flipflops with clock enable, together with aver 10 Mb of block RAM, and 550-MHz clock
technology packed into a single die.
The Vmx famiiy i n c o w physical (e l e d d) and protoool support for 20 diffmt VO

standards, hclubg LVDS and L m , with individdy proepmn&le pins. Up to 12 dig-
itaI clwk mmgers provide support for freqwncy syndmh a d phase - in syaehnous
appsicatiom requiring multiple clack domains and high-fresueacy UO. me Virtex archim-
hrre is shown in Fig. 7.31. and its IOB is shown in Fig. 7.32.

FIGURE 7.32
VIrtex 10% block

P R O B L E M S

Answers to problems marked with * appear at the end of the book

7.1 The memory units that follow are specified by the number of words times the number of bits per
word, How many address lines and input-output data lines are needed in each case?
(a) 8K x 16
(b) 2G X 8
(c) 16M X 32
(d) 256K X 64

7 s Give the number of bytes stored in the memories listed in Problem 7.1,

7,3* Word number 723 in the memory shown in Fig. 7.3 contains the binary equivalent of 3,45 1. List
ihe 10-bit address and the 16-bit memory content of the word.

7.4 Show the memory cycle timing waveforms for the write and read operations. Assume a CPU
clock of 1100 MHz and a memory cycle time of 25 ns.

7 5 Write a test bench for the memory described in HDL Example 7.1. The test program stores
binary 5 in address 3 and binary 10 in address 43. Then the two addresses are read to verify
their stored contents.

Chapter 7 Mmwy and hogrrmmW Logk

7 A 16K X 4 memory m r miacident decoding by splitting the intgnal decoder into X - w k t b n
and Y-selecbIon.
(a) Wisthesizedsaehdecodec,aadhow~yN~ar*roqPitadfardecodingW

addms?
(b) D e t e r m i a s t h e X ~ Y ~ n I i n e ~ t s e t a ~ e ~ l e d w h e n ~ ~ t ~ i s ~ ~

equivalent of6,oOO.

7-W (a) How many 32K X 8 RAM chips are needed to prwide a memwy W t y of 256K bym?
(b) I J o w m a n y l i n e s o f ~ ~ ~ b w t o ~ 2 5 B I C ~ ? * r n a n y o f t b e s e k

me c o n n d m t t w d h w -of all chip?
(c) Howmaaylirscsmusth~fwthcebip~l~in~?S~the~d~decodeL

7.W A l Z b i t ~ ~ w c r d ~ 8 U o f d a t a a n d 4 @ ~ W i s r e a d ~ ~ . W h a t
wastbeorigU8-8-t datawardthatwao~htomesrnoryifthe I2-bitwmdnadwtisasfollows:
(a) ~ 1 l l O l O l O
@) l o l l l m l l o
(c) 101111110100

7.3 P How many parity check bh must be kluded with the data word to %ehim s i n g I m cmm-
tion and double-error W o n when the data wad contsrins
(a) 16 bits.
(b) 32 bits.
(c) 48 bits,

7.14 Itis~oformulawtbsZZamming~h~databits4,~,06.d&,~wittr
thretpatirybitaP~,%aadfi.
(a)*Evaluate the 7-W comp& word for tht data wad 0010.
(b) EvaIuate thiee check bits, Ch CZ, and Cl, assuming no tma,
(c) Assume an wrw in bit Q during Writing into v. Show bow the mm~ in the bit i

detedwlaudcmrectd
(d) A d d p W i t y b i t ~ t o ~ ~ ~ d e k d i m i a t k ~ A s w r m e t h a t ~ ~

in bits p% and&. Show~thedoubIeemxisde0octed.

7.lW AROMchipof4,0% X 8WhrrstwochipWwdopetaaesfrornaS-vohpwp.snp
& . H o w m a n y p i n s m n s c d c d E O r h ~ M t ~ ? D r e w a W ~ d W
all input and output termids in the ROM.

- .
Problems

1.17 The 32 X 6 ROM, together with the 2' line, as shown in Fig. P7.17, converts a six-bit binary num-
ber to its couesponding two-digit BCD number. For example, binary 1OOOO1 converts to BCD
01 1 001 1 (decimal 33). Specify the mth table for the ROM

7.1P Specify the size of a ROM (number of words and number of bits per word) tlwt wil l accomms
date the truth table for the folIowing combinational circuit components:
(a) a bbinary multiplier that multiplies two &bit b i n q words,
(b) a 4-bit adder-subtractor,
(c) a quadruple two-tc-one-line multiplexer with common select and enable inputs, and
(d) a BCD-to-seven-segment decoder with an enable input.

7.19 Tabulate the PLA programming table for the four Boolean funl;tions . listed . Mow. Minimize the
numbers of product terms,

7.20 Tabulate the truth table for an 8 X 4 ROM that implements the Boolean functions

D (x , y, z) = X(0 ,1 ,4 ,5 ,7)
Considering now the ROM as a memory, Specify the memory contents at addresses 1 and 4.

Chapter 7 Merrmy and Pmgr-unmable bgk

1 Derive the PLA programing table for the combinatid etrcuit thar q m t s a k - b h n m k
Minimize the number of product terms. (h Fig. 7.12 for the equivalent ROM implemmaion.)

7.22 DerivetheXOMpmgmdngtabkfwtk~ . . ~ ~ ~ a 4 l i t n u m k ~ -

imize the number of p m h t terms.

7.23. List the PLA programming table for the BCD-mctss-3& c o n m whmc BooIean func-
tions are simplified in Fig. 4.3.

7.24 Repeat Problem 7.23, using a PAL.

7 AS* The following is a mtb table of a be input , ~ C ~ U T - O U ~ combinaiional: circuit:
Inpub -

TabuIate the PAL pragramming table for the circuit, and mark the fuse map in a PAL diagram
similar to the one shown in Fig. 7.17.

7- Using the regis- macrodl of Fig. 7.19, show the ftw mtlp for a qmmtial circlrit with two
inputs x and y and one flipfl op A M b s d by the input equation

737 Madify dx PAL, diagram dm. 7.16 by including three cLocked D-typ fbipflqs between tht
OR gates and the outpuas, as in Fig. 7.19. The d i p should conform with ~ I C block diagram
of a sequential c h i t . The modification will q u i r e three additional buffer-invmer gates and six
vertical lines for the flip-flop outputs to be cwneckd to the AND m y though prcpmt&Ie
comections. Using I& m d e d regisrered PAL diagram show ihe fusc map hat &-ill imphmt
a three-bit binary counter with an output carry.

7.U Draw a PLA circuit to implement the functions
Fl = A'B + AC' + A'E
& = [A C + # + B C) '

7.m Develop the programming table for the PLA dacrihd in R a b h 7.26.

References . 333

E F E R E N C E S

HAMMING, R. W. 1950. Error Detecting and Error Correcting Codes. Bell @st. Tech. J. 29:
147-160.
KITSON, B. 1984, Programmable Array Logic Ha~rdbook. Sunnyvale, CA: Advanced Micro
Devices.
Lm, S., and D. J. COSTELLO, IR. 1983. Ermr Conrwl Coding. Englewood Cliffs, NJ: Prentice-Hall.
Memory Components Handbook. 1986. Santa Clara, CA: Intel.
NELSON, V. P., H. T. NAG=, J, D. IRWE-, and B, D, CARROLL, 1995. Digital Logic Circub Analp
sis and Design. Upper Saddle River, NJ: Prentice Hall.
Programm~bb Logic Data Book. 1988. Dallas: Texas Insmmenrs.
The Programmable Logic Data Book, 2d ed. 1994. San Jose, CA; Xilinx, Inc.
T ~ c I , R. J., and N. S . WDMER. 2004. Digital System Principles and Applications, 9th ed. Upper
Saddle River, NJ: Prentice Hall.
TR~MBERGER, S. M. 1994. Field Pmgmmmabk Gate A m y Technalo~. Boston: Kluwer Academic
Publishers.
W ~ Y , J. F. 2006, Digital Design: Principles and Practices, 4th ed. Upper Saddle River, NJ:
hut i ce Hall.

	07 – Memory and Programmable Logic.PDF
	284.tif
	285.tif
	286.tif
	287.tif
	288.tif
	289.tif
	290.tif
	291.tif
	292.tif
	293.tif
	294.tif
	295.tif
	296.tif
	297.tif
	298.tif
	299.tif
	300.tif
	301.tif
	302.tif
	303.tif
	304.tif
	305.tif
	306.tif
	307.tif
	308.tif
	309.tif
	310.tif
	311.tif
	312.tif
	313.tif
	314.tif
	315.tif
	316.tif
	317.tif
	318.tif
	319.tif
	320.tif
	321.tif
	322.tif
	323.tif
	324.tif
	325.tif
	326.tif
	327.tif
	328.tif
	329.tif
	330.tif
	331.tif
	332.tif
	333.tif

