
Chapter 8

Design at the Register Transfer Level

8.1 IN'TRODUCTION

A digital system is a sequential logic system constructed wih flipflops and gaaas. SequentiaI
circuits can be specified by means of state tables as shown in Chapter 5. To v i f y a large dig-
ital systern with a state table is very Wcult, bemuse the number of states would be cnor-
mow. To overcome this Mcdty , digital systems am designed via a &ar approach. 'he
systcm is partiriond into modular subsystems, each of which performs some function. The
modules are constructed h m auch digital &vices as registers, decoders, mulfipkxem arith-
metic elements, and control logic. Tha lraxious d u l e s are intmmmckd with daqahs aud
control signals to form a digital system In this chapter, we will in&ahcc a design n d d o l -
ogy for describing and designing large, complex digital systems.

- T R A N S F E R LEVEL (RTL) NOTATION

T t s e n a o d u E e s o f a d i g i t d ~ m b e s t ~ b y a s e t o f ~ a n d h ~ & a ~ e p e a -
f o r m e d o n ~ b i n a r y i n f ~ 0 ~ ~ i n t h r m . E x a m p l e s o f r e g i s t e a 1 ~ ~ a r e ~ ~ , c w m r ,
clear, and load, Registers are a s m d to be the basic c m p m t s d d~ digital system 'Ihc in-
~ m f l o w a n d ~ p e r f c a m a d o p t h e d a t a d i n t h e ~ a r e ~ m ~ ~
~ r ~ . W l I s e e ~ h a M m d e s c d p c i o n ~ h l u d e s o p e r a -
t m s t h a t q d t o t h e ~ W ~ o f a ~ ~ A d i g i t a l ~ i s ~
&atthereg&ertmq&rlevel(EI'L)whenitis ~ b y t b e f o ~ t h m e ~ t s :

1. The set of registas in the system.

Sedon 8.2 Register Transfer Level (RTL) Notatlon

Aregister is a group of flip-flops that stores binary information and has the capability of per-
forming one or more elementary operations. A register can load new information m shift the
information to the right or the left. A counter is considered a register that increments a num-
ber by a fixed value (e.g., 1). A flip-flop is considered a one-bit register that can be set, cleared,
or complemented. In fact, the flip-flops and associated gates of any sequential circuit can be
called registers by this definition.

The operations mecuted on the information stored in registers are elementary operations that
are performed in parallel on a data word consisting of bits during one clock cycle. The data pro-
duced by the operation may replace the binary information that was in the register before the
operation executed. Alternatively, the result may be transferred to another register (i.e., an op-
eration on a register may leave its contents unchanged), The digital circuits introduced in
Chapter 6 are registers that implement elementary operations. A counter with a parallel load is
able to perform the increment-by-one and lod operations. A bidirectional shift register is able
to perform the shift-right and shift-left operations.

The operations in a digital system are controlled by timing signals that sequence the oper-
ations in a prescribed manner. Certain conditions that depend on results of previous operations
may determine the sequence of future operations. The outputs of the control logic are binary
variables that initiate the various operations in the system's registen.

Information transfer from one register to another is designated in symbolic form by means
of a replacement operator. The statement

R2 + R l

denotes a transfer of the contents of register R l into register R2-that is, a replacement of the
contents of register R2 by the contents of register Rl . By defmition, the contents of the source
register R1 do not change after the transfer. They are merely copied to R1. The arrow symbol-
izes the transfer and its direction; it points from the register whose contents are being transferred
and towards the register that will receive the contents. A conbol signal would d e t d t when
the operation actually executes.

The controller in a digital system is a finite state machine whose outputs are the control
signals governing the register operations. In synchronous machines, the operations are syn-
chronized by the system clock

A statement that specifies a register transfer operation implies that a datapath (i.e., a set of
circuit connections) i s available from the outputs of the source register to the inputs of the des-
tination register and that the destination register has a parallel load capability, Data can be
transferred serially between registers, too, by repeatedly shifting their contents along a single
wire. one bit at a time. Normally, we want a register transfer operation to occur, not with every
clock cycle, but only under a predetermined condition. A conditional statement governing a reg-
ister transfer operation is symbolized with an if-then statement such as

If (TI = 1) then (R2 + R l)

where TI is a control signal generated in the control s d o n . Note that the clock is not indud-
ed as a variable in the register transfer statements. It is asmuned that all ~ s f m occur at a clock-
edge transition (i.e., a transition from 0 to 1 or from 1 to 0). Although a control condition such
as TI may become true before the clock transition, the actual transfer does not occur until the
clock transition does.

Chapter 8 Design at the Register Tran$fcr lmel

A comma may be used to separate two or more operations that ate executed at tbe same
time (concurrently). Consider the statement

If (T3 = 1) then (R2 s- Rl , Rl + R2)

This statement specifies a opation that exebanges the c o m t s of two @ten; mwemer,
t 8 e ~ t i o n h ~ ~ ~ t c g s i s t r i g ~ b y d m e ~ c I o c k e d g e , p ~ t h a t T 3 = I-This
simultaneous operation is possible with registers that have edge-triggered flip-flops con-
trolled by a common clck (synchronizing signail. Other examples of register transfers = 9s

folIows:

RI + R1 + R2 Add contents of R2 to Rl (R l gets RI + R2)

El*- R3 f 1 hmment R3 by 1 (count upwards)

Sbift right R4

In hardware, addition is done with a binary parallel adder, incrementing is done with a count-
er, and the shift operation is implemen*d wia a shift mgkm. The type of operations most
often encwntered in digital sys@ms can be classified into four categories:

1. Tiansfex operations, which &er (i.e., copy) data hm one regher to another.
2. Arithmetic o@m, which perform arithmetic on dm in regism.
3. Logic operations, which perform bit mmipuhtiw (e.g., logical OR) of nonnumeric data

in regism.
4. Shift operations. wfiich shift data between regism.

The transfer operation does not change the infomation cmbmt ofthe data being moved from
the m e register to the destination register. The other three operations &mge the infoma-
tion content during the tmsfer. The register transfer notation and the symbols nscd to repre-
sent the v a h s register transfer operations are not standardized. In this text, we employ rwo
types of notation. The notation inttoduced in this sectim will be used informally to specify and
explain digital systems at the regisler transfer kvel. The next section intraduces the RTL sym-
bols used in the Verilog HDL.

REGiSTER T R A N S F E R LEVEL IN H D t

Digital systems can be described at the register transfer level by m a s of a hardware de-
scription language @DL). In Vdog, daaip?ions of RTL ~~ use a c o m b ~ w of
behavioral and datdow constructs and are employed to specify the register opatio~ls and the
ambinational logic h c t i o m implemenaed by hard-. Register W e r s are s p h d by
means of procedural assignment statements within an edge-sensitive cyciic behavia, Combi-
national circuit functions are specitled at the RTL level by ~lleans of cwhmus assignment state-
ments or by procedural assignment statements within a level-sensitive cyclic behavior. The
symbol wed to designate a register d e r is either an equals sign (=) or an arrow (<=) ; ihe
symtml used to specify a combinational circuit function is aa oqulrls sign. S y n c h n h i o n

Sedun 8,3 Register Transfer Level in HDL 337

with the clock is represented by associating with an always statement an event control ex-
pression in which sensitivity to the clmk event is qualified by p d g e or aegedge. The always
keyword indicates that the associated block of statements will be executed repeatedly, for the
life of the simulation. The @ operator and the event control expression preceding the block of
statements synchronize the execution of the statements to the clock event.

The fallowing examples show the various ways to specify a register transfer operation in
V d q :

(a) asslgn S = A + 6;
(b) always @ (A, 0)

S = A + B ;
(Q always @ (negedge clock)

RA = RA + RB;
RD = RA;

end
(d) always @ (negedge clmk)

begin
??A <= RA + RB;
RD <= RA;

end

/I Continuous assignment for additlon operation
I/ Level-sensitive cycllc behavior
I / Combinationat loglc for addition operation
I/ Edge-sensltlve cyclic behavior

/I Blocklng procedural assignment for addition
I / Register transfer operation

I1 Edge-sensitive cycllc behavlor

I / Nonblocking procedural assignment for addition
It Register transfer operation

Continuous assignments are used to represent and specify combinational logic circuits, In
simulation, a continuous assignment statement executes when the expression on the right-hand
side changes. The effect of execution is immediate. (The variabIe on ?he left-hand side is up-
dated.) Similarly, a level-sensitive cyclic behavior executes when a change is detected by its
event control expression (sensitivity list). The effect of assignments made by the = -tar
are immediate. The continuous assignment statement (assign) describes a binary adder with in-
puts A and B and output S. The target operand in a continuous assignment statement (Sin his
case) cannot be a register data type, but must be a type of net, for example, wire. The prwe-
dural assignment made in the level-sensitive cyclic behavior in the second example shows an
alternative way of specifying a combinational circuit for addition. Within the cyclic behavior,
the mechanism of the sensitivity list ensures that the output, S, will be updated whenever A, or
B, or both change.

There are two kinds of procedural assignments: blocking and nonblocking. The two are dis-
tinguished by the symbols that they use and by their operation. Blocking assignments use the
equds symbol (=) as the assignment operator, and nonblmking assignments use the left arrow
(<=) as the operator. Blocking assignment statements are executed sequen~dly in the order
that they are listed in a sequential block; when they execute, they have an immediate effect on
the contents of memory before the next statement can be executed. Nonbl~king assignments
are made concurrentlyy. This feature is implemented by e v a l h g the expression on the right-
hand side of each statement in the list of statements before making the assignment to their left-
band sides. Consequently, there is no interaction between the result of any assignment and the
evaluation of an expression affecting another assignment. Also, the statements associated with
an edge-sensitive cyclic behavior do not execute until the indicated edge condition occurs.

333 Chapter 8 Design at the Rqfster Transfer h l

Consider the two examples given. In the blocking procedural assignment, the fmt statement
transfers the s u m to RA and the second statement transfers the new value of RA into RD. At the
completion of the operation, both RA and RD have the same value. In the nd10cking proce-
dural assignment, the two operations are performed cmmme,ntly, so ththat RD receives the a-
inal value of RA. The activity in both examples is launched by the clwk undergoing a falling
edge transition.
The registers in a system are clocked simultaneously (concurrently). The Dinput of each

flipflop determines the value that will be assigned to its output, indepede~~tly of the input to
any other flip-flop. To ensure synchronous o&om in RTL design, and to ensue a match be-
tween an HDL model and the circuit synthesized from the model. it is necessary that nm-
blocking procedural assignments be used for all variables that are assigned a value within an
edge-sensitive cyclic behavior (always clocked). The nonblocking assignment that appears in
an edge-sensitive cyclic behavior .+, models the khavior of h e hardware of a synchronous se
quential circuit accurately.

HDL Operators

The Verilog HDL operators and their symbols used in RTL design are listed in Table 8.1. The
arithmetic, logic, and shift operators describe register transfer operations. The logcal and re-
lational operators specify control conditions and have Boolean expressions as their arguments.

The operands of the arithmetic operators are numbers. The + , -, *, and I operators form the
sum, difference, product, and quotient, respectively, of a pair of operands. The expaentiation
operator (**) was added to the language in 2001 and forms a double-precision floating-point
value from a base and exponent having a real, integer, or signed value. Negative numbers are
represented in 2's-complement form. The modulus operator produces the r e d d e r from the
division of two numbers. For example, 14 5% 3 evaluates to 2.

There are two types of logic operators for binary words: bitwise and reduction. The bitwise
operators perform a bit-by-bit operation on two vector operands to form a vector result. They
take each bit in one operand and perform the operation with the corresponding bit in the other
operand. Negation (-) is a unary operator; it complements the bits of a single vector operand
to form a vector result. The reduction operators are also unary, acting on a single operand and
producing a scalar (one-bit) result. They operate pairwise on the bits of a word. from right to
left, and yield a one-bit result. For example, the reduction NOR (- 1) results in 0 with operand
001 0 1 and in 1 with operand 00000. The result of applying the NOR operation on the fmt two
bits is used with the third bit, and so forth. Negation is not used as a reduction opemor. Tmth
tables for the bitwise operators are the same as those listed in Table 4.9 in Section 1.12 for the
corresponding Verilog primitive (e.g., the and primitive and the & bitwise operator have the
same truth table). The output of an AND gate with two scalar inputs is the same as the result
produced by operating on the two bits with the & operator.

The logical and ~lat iwal operators are used to form Boolean expressions and can mke vari-
ables or expressions as operands. (Note: A variable is also an expression.) Used basically for de-
termining true or false d t i o n s , the logical and relational operators evaluate to 1 if tbe condition
expressed is m e and to 0 if the condition is false. If the condition is ambiguous, they evaluate
to x. An operand that is a variable evaluates to 0 if the value of the variable is equal to zero and

Sectlon 8.3 Register Transfer Level in HDt 339

Table 8.1
Vedhg 2001 #Dl Opcruton

Operator Type Symbol Operation Performed

Arithmetic addition
subtraction

multiplication
division
modulus
exponentiation

Logic * negation (complement)
(bitwise & AND
or I OR
reduction) n exclusive-OR (XOR)

Logical 1 negation

&& AND

11 OR

Shift >> logical right shift

<< logical left shift

>a> arithmetic right shift

<<< arithmetic left shift

1 1 1 concatenation

Relational > greater than
c less than

equality

inequality
case equality
case inequality

greater than or equd
C= less than or qual

to 1 if the value is not qua1 to zero. For example, if A = 10 10 and 3 = 0000, then the ex-
pression A has the Boolean value 1 (the number in question is not equal to 0) and the expres-
sion B has the Boolean value 0. Results of other operations with these values are as follows:

11 logical AND
I / loglcal OR
It logical complement
I / logical complement

(A z B) = l I/ k greater than
{A==8)=0 I/ l d ~ w (~uwl

Tberelatioaaloperators === a n d ! = = t e s t f o x b i t w i a e ~ r y (~) a n d ~ t y i n M -
ilogf four-valued logic system. Far example, if A = OxxO rmd B = (IxxO, th A = = = B
would evaluate to me, but the test A == B would evdwte to x.

Verilog 2001 has logical and arithmtic M m. lk logical shifi operators shift a vec-
tor operand to the right or the l& by a sped74 number of bits. The vacated bit p h b n s we
med wid^ zeros. For example, if R = 11014 then the statement

R = R > r 1 ;

shifts R to the right one position. The value of R that result9 from the togical tigbt-dift m m
is 01 101, In contrast, tlx arithmetic right-shift operam fib the vacated cell (!k most s@d%=t
bit~B))~~i~~conteatPwhenthewordisshifbed8o~right.The~leff~
operator ms the vacated dl with a 0 whea the ward is shifted to tthe lek The ari- I$@-
shiftopitofisused when tbe sirnextemion of a n u m b e r i s m H R = 11010, h t h e
SCatement

R ..> 1;

producesthe~sultR = lll01;ifR = 01101, i t~ucesthe~e~ul tR = 00110.Tkebno
dishmion between the logical l&-shift and the aridmetic M-shift operators.

The concare&on -tor prmides a mechanism for appending multiple @. It can
be used to spcify a shift, including the bits transfend into the vacant pitiom. This aspect
of ib operation was shown in HDL Example 6.1 for the shift register.

~ m e v a l ~ f r o m M b ~ a n d t h e i r ~ ~ f r o m M a ~ (w i t h
the exception of the conditional qmtm) m d h g to the p m m h c e dmm in Table 82. For
example, in theexprcssion A + B - C , h v h d B i s addedtoA. d then Cis-
f r r n n t h . ~ t . I n t h c e x ~ ~ ~ ~ A + BIC,bteva l~ofBis&videdbyC,dthentbe~ i s
~ @ A b o c a u s e t h e d i v i s i ~ n ~ (/) h a s a h i g h e r ~ h t b e a d d i t i ~ ~ . o p e r a t o r
(+) . U s e p n k ~ ~ t a b ~ ~ P o r ~ k , ~ e x ~ (A + B)iCismttb
same, as h e expression A +- BIC.

Loop statemum

V e r i l ~ g ~ L ~ f ~ t y p e s o f I ~ ~ ~ ~ ~ ~ f ~ ~ y m ~ , p b t -
m r , while,and@r A I l ~ g ~ ~ m u s t a p p e o l r i a s i d e a a i n t t l l a ~ l l ~ b l o c k .

The v t loop executes the swemem a s m number of times. 'Xbt fol-
lowing is an example ?hat was uscd @dy

initial
Wg In
dock = l'bO;

(16)
=dock=-dodr;

end

This c d e produces eight clock cyck wim a cycle time of 10 time units.

Section 8.3 Regtster Transfer Level in HDL

Table 8.2
Verlhg Operam Precedence

+ - ! - & - &] - 1 A - " A - (unary) Highest precedence

?: (conditional operator)

The forever loop causes unconditional, repetitive execution of a procedural statement or a
block of procedural statements. For example, the following loop produces a continuous clock
having a cycle time of 20 time units:

inltlal
begln
clock = l'bO;
forever
#10 clock = - clock; '

end

3.
0 {OI

The wbile loop executes a statement or a block of statements repeatedly while an expres-
sion is true. If the expression is false to begin with, the statement is never executed. Tbe fol-
lowing example illustrates the use of the wbile loop:

Lowest precedence

integer count:
lnltlal
begln

count = 0;
while (count < 64)
#5 count = count + 1;

end

Chapter 8 Oeslgn at the Register Tnnacr kwl

The d u e of count is incremented frwm 0 to 63. Each inc~~mttlt is delayed by five time units,
and the loop exits at the count of 64.

I n ~ g w i t h l o o p i n g s ~ ~ t s i t i s ~ o o n v e Q i ~ ~ t t o u s t ~ h ~ d a t a t y p e
to index tbe imp. Integers are declared with the keyword m, as in the previous example.
Although it is possible to use a reg variable to index a loop, it is more convenient to
d e c h an integer variable, rather than a reg, for cwnting pltrpo9es. Variables declared as data
t y p e r e g ~ s t o r e d a s u a s i @ r m m b e r s , ~ d e c ~ a s d a t a t y p e ~ m s ~ a s s i g a e d
numbers in 2'keomplement form& ' h e default width of an integer is a minimum of 32 bits.

The for Iwp contains three pans v c d by two semicolons:

An expression ta check for the terminating condition.

An kgDrnent to change the control variable.

The following is an exampie of a for loop:

f b r ~ = O ; j < 8 ; j = j + 1)
w n

/I procedural s&temmts go here
end

The for loop statement repats the execution of the @ural statements eight times. The
cmml variable is j, the initial condition is j = 0, and the loop is repted as long as j is less
than 8. After each execution of the loop statement, the value of j is incremented by 1.

A description of a two-to-fow-line decoder using a for loop is shown in HDL Example 8.1.
S h output Y is e v a l d in a pmdural statement, it must bt de&d as type w. The con-
trol variable for tbe loop is the Integer k. When the loop is e x p d d (unrolled), we get tbe fol-
lowing four conditions (IN and Y a m in b i , and the index for Y is in decimal):

if IN = 00 then Y(0) = 1 ; else Y(O) = 0;

W IN = 01 then Y(1) = ?; else Y(1) = 0;

if IN= 10 then Y(2) = 1; else Y(2) = 0;

if IN= 11 then Y(3)= I ; else 83)=0;

HDL Exampie 8.1

/I Description of 2 x 4 decoder using a for loop statement
module decoder (IN, Y);
Input (1 : q IN; I/ Two binary inputs
O u t p a P:01 Y ; Ii four binary
wl [3: Oj Y;
Integer k; it Control (index) variable for loop

always @ (IN)
for(k=O;k<=3;k=k+ 1)

Section 8.3 Register Transfer Lwei In HPL 343

if (IN == k) Y[k] = 1;
else Y[k] = 0;

endmodule

b k Synthesis

Logic synthesis is the automatic process by which a computer-based program (i.e., a synthesis
tool) transforms an HDL model of a logic circuit into an optimized netlist of gates that perform
the operations specified by the source code. There are various target technologies that implement
the synthesized design in hardware. The effective use of an HDL description requires that designers
adopt a vendor-specific style suitable for the particular synthesis tools. The type of ICs that im-
plement the design may be an application-specific integrated circuit (ASIC), a progrmmtble
logic device (FLD), or a field-programmable gate array (FPGA). Logic synthesis is widely used
in industry to design and implement large circuits efficiently, correctly, and rapidly.

Logtc synthesis tools interpret the source code of the hardware description language and
translate it into an optimized gate structure, accomplishing (correctly) all of the work that
would be done by manual methods using h a u g h maps. Designs written inverilog or a com-
parable language for the purpose of logic synthesis tend to be at the register transfer level. This
is because the HDL constructs used in an RTL description can be converted into a gate-level
description in a swaightforward manner. The following examples discuss how a logic synthe-
sizer can interpret an HDL construct and convert it into a gate structure.
The continuous assignment (assign) statement is used to describe combinational circuits. In

an HDL, it represents a Boolean equation for a logic cirduit. A continuous assignment with a
Boolean expression for the right-hand side of the assignment statement is synthesized into the
corresponding gate circuit implementing the expression. An expression with an addition operator
(+) is interpreted as a binary adder with full-adder circuits. An expression with a subtraction
operator (-) is converted into a gate-level subtractor consisting of fulI adders and exclusive-
OR gates (Fig, 4.13). A statement with a conrlltional operator such as

translates into a two-to-one-line multiplexer with control input S and data inputs In-1 and In-0.
A statement with multiple conditional operators specifies a larger multiplexer.

A cyclic behavior (always . . .) may imply a combinational or sequential circuit, depending
on whether the event control expression is level sensitive or edge sensitive. A synthesis tool will
interpret as combinational logic a level-sensitive cyclic behavior whose event control expression
is sensitive to every variable that is referenced witbin tbe behavior (e.g., by the variable's appearing
in the right-hand side of an assignment statement), The event control expression in a description
of combinational logic may not be sensitive to an edge of any signal. For example,

always @ (In-I or In-0 or S)

If (S) Y = l n-1 ;

else Y = In-0;

translates into a two-to-one-line multiplexer. As an alternative, the case statement may be used
to imply large multiplexas. The casex statement treats the logic values x and z as don't-cares
when they appear in either the case expression or a case item.

Section 8.4 Algorithmic state Machines (ASMS) 345

operation. Its operational features must match those given in the specification for the behav-
ior of the circuit. The test bench provides the stimulus signals to the sirnulator. If the result of
the simulation is not satisfactory, the HDL description is corrected and checked again. After the
simulation run shows a valid design, the RTL description is ready to be compild by the logic
synthesizer. All errors (syntax and functional) in the description must be eliminated before
synthesis. The synthesis tool generates a netlist equivalent to a gate-level description of the de-
sign w, it is represented by the model, If the model fails to express the functionality of the spec-
ification, the circuit will fail to do so also. The gate-level circuit is simulated with the same set
of stimuli used to check the RTL design. If any corrections are needed, the process is repeat-
ed until a satisfactory simulation is achieved. The results of the two simulations are compared
to see if they match. If they do not, the designer must change the RTL description to correct any
errors in the design. Then the description is again compiled by the logic synthesizer to generare
a new gate-level description. Once the designer is satisfied with the results of all simulation
tests, the design of the circuit is ready for physical implementation in a technology. In practice,
additional testing will be performed to verify that the timing specifications of the circuit can be
met in the chosen hardware technology. That issue is not within the scope of this text.

Logic synthesis provides several advantages to the designer. It takes less time to write an
HDL description and synthesize a gate-level realization than it does to develop the circuit by man-
ual enby from schematic diagrams. The ease of changing the description facilitates exploration
of &sign alternatives. It is faster, easier, less expensive, and Iess risky to check the validity of
the design by simulation than it is to produce a hardware prototype for evaluation. A schemat-
ic and the database for fabricating the integrated circuit can be generated automatically by
synthesis tools. The HDL model can be compiled by different tools into different technologies
(e.g., ASIC cells or FPGAs), providing multiple returns on the investment to create the model.

8.4 ALGORITHMIC STATE M A C H I N E S (ASMr)

The binary information stored in a digital system can k classified as either data or control in-
formation. Data are discrete elements of information (binary words) that are manipulated by per-
fwning arithmetic, logic, shift, and other similar data-processing operations. These operations
are implemnted with digital components such as adders, decoders, multiplexers, counters, and
shift ~asters. Control information provides command signals that coordinate and execute the var-
ious operations in the data section in order to accomplish the desired W-processing tasks.

The logic design of a digital system can be divided into two distinct parts. One part is con-
cerned with the design of the digital circuits that perform the data-processing operations. The
other part is concerned with the design of the control circuits that determine the sequence in
which the various actions are performed.
The relationship between the conml logic and the data-processing operations in a digital sys-

tem is shown in Fig. 8.2. The data-processing path, commonly referred to as the datapath unit,
manipulates data in registers according to the system's requirements. The control unit issues a
sequence of commands to the datapath unit. Note that m hternaI feedback path from the data-
path unit to the control unit provides status condtions that the control unit uses togetha with
the external (primary) inputs to determine h e sequence of conml signals (outputs of the control

unit) that directthe~onufthedatapthImit. We'llae l a t e r t h a t ~ ~ h o w t o
model this feedback relationship with an HDL is very hgmtmt

The control logic that generafes tbe signah for sequencing I& o p d o f l s in the hapath unit
is a finite state machine (FSMJ, i.e., a synchronous sequential circuit. The control commands
for the system are pd& by lhe FSM aa functions of the primary inputs, tk stam signals,
and the state of the machine. In a given state, the outputs of the contmller ate the inputs to the
datapath uuit and determine the opxtiofls that it will execute. hgmdbg on status conditions
and other external inputs, the FSM g m to its next state to initiate other operations. The digi-
tal circuits that act as the control logic provide a time s q m c t of signals for initiaring ttme op-
erations in the datapath and a ls~ de temk the next state of the -1 subsystem itself
The control sequence and data@ t a b of a digital system are spdied by m e . of a

hardware algorithm. An alg0r;dnn d s t s of a finite numb of p m d m d steps hu s p a f y
how to obtain a solution b a pblem. A hmdwm algorithm is a pmedm for solving the
problem with a given piece of eqpiprraent. TIE most cbaUenging d d v e part of digital de-
sign is the formulation of h m h r c algorithms for achiwing reqaiFed objectives. The god to
implement the algorithms in @con as an integrated Wt.

A fIowchrt is a convenient way to specify ttae wqumx of steps and deckion p&s
for an algorithm. A flowchart for a hardware dgmithm tmnsks the verbal i n s e w s to an
M ~ m ~ t h a t ~ t h e ~ a f ~ m ~ w i t h ~ c w d i t i 0 ~ 1 6 ~
essary for their execution. A flowchart that has been developsd spcikal ly to d d k digital
hardwan algwithms L called an algoritRmic s t a t e ~ ~ ~ h i r s c (ASM) c W A s m mnchine is
another term for a sequentid circuit, wbich is the basic sbuctm of a digital system.

AJM Qlatt

The ASM chartr;esemblesacun~fbwchart, but is in- sonaewhatdiffkedy.
A conventional flowchart dwxhs k procedural steps and decision paths of an algorithm in

FIG4JRE 8.3
ASM chart state . - box . .

a sequential manner, without taking into consideration their time relationship. The ASM chart
describes the sequence of events, as well as the timing relationship between the states of a se-
quential controller and the events that occur while going from one state to the next (i.e., the
events that are synchronous with changes in the state). The chart is adapted to specify accwakly
the control sequence and datapath operations in a digital system, taking into consideration the
constraints of digital hardware.

The ASM chart is composed of threebasic elements: the state box, the decision box, and the
conditional box. The boxes themselves are connected by directed edges indicating the se-
quential precedence and evolution of the states as the machine operates. There are various
ways to attach information to an ASM chart, In one, a state in the control sequence is indicat-
ed by a state box, as shown in Fig. 8.3(a). The shape of the state box is a rectangle within
which are written register operations or the names of output signals that the control generates
while being in the indicated state. The state is given a symbolic name, which is placed within
the upper left corner of the box. The binary code assigned to the state is placed at the upper right
corner. (The state symbol and code can be placed in other places as well.) Figure 8.3(b) gives
an example of a state box. The state has the symbolic name Sqause, arid the binary code as-
signed to it is 0101. Inside the box is written the register operation R * 0, which indicates
that register R is to be cleared to 0. The name Start-OF-A inside the box indicates, for exam-
ple, a Moore-type output signal that is asserted while the machine is in state S j a u s e and that
launches a certain operation in the datapath unit.

The style of state box shown in Fig. 8.3(b) is sometimes used in ASM charts, but it can lead
to confusion about when the register operation R + 0 is to execute. Although the opemtion is
written inside the state bax, it actually occurs when the machine makes a transition from
Sqause to its next state. In fact, writing the register operation within the state box is a way (al-
beit possibly confusing) to indicate that the controller must assert a signal that will cause the
register operation to occur when the machine changes state. Later we'll inrroduce a chart and
notation that are more suited to digital design and that will eliminate any ambiguity about the
register operations controlled by a state machine.

The declsion box of an ASM chart describes the effect of an input (i.e., a primary, or external,
input or a status, or internal, signal) on the control subsystem. The box is diamond shaped and has
two or more exit paths, as shown in Fig. 8.4, The input condition to be tested is written inside the
box. One or the otber exit path is taken, depending on the evaluation of the condition. In the bi-
nary case, one path is taken if the condition is true and another when the condition is false. When
an input condition is assigned a binary value, the two paths are indicated by 1 and 0, respectively.

.MS Chapter I Dedgn at the RqiW Transfer Wl

t
Exit path

FlGUClE 8,s
ASM c h r t condlthal box

The state and decision boxes of an ASM chart are s b k to those used in conventional
flowcharts. The third element, the dt ional box, is miqm to dx ASM chart. The s- of
the conditional box is shown in Fig. 8.5(a). Its rounded corners -tiate it from the state
lmx The input path to the conditional box must come from oae of the exit patbs of a decision
box. The outputs listed inside the conditional box are generated as Mealy-type signals during
a given state; the register operations listed in the conditional box are associated with a transi-
tion h m the state. Figure S.S(b) shows an exampie with a conditional box. The cootrol gen-
cram the output signal S m wheo in state S-2 a d checks the staRls of input Fhg. If Flag = 1,

Section 8.4 Algorithmic State Machines (ASMs) 349

then R is cleared to 0; otherwise, R remains unchanged, In either case, the next state is S Z . A
register operation is associated with S-2. We again note that this style of chart can be a source
of confusion, because the stam machine does not execute the indicated register operation R + 0
when it is in S-1 or the operation F -+ G when it is in S 2 , The notation actually indicates that
when the contro1ler is in S-1, it must assert a Mealy -type signal that will cause the register op-
eration R + 0 to execute in the datapath unit, subject to the condition that Flag = 0. Likewise,
in state 232, the cmtroller must generate a Moore-type output signal that causes the register
operation F * G to execute in the datapath unit. The operations in the datapath unit are syn-
chronized to the clock edge that causes the state to move from XI to S-2 and from 5-2 to
3-3. respectively. Thus, the control signal generated in a given state affects the operation of a
register in the datapath when the next clock transition occurs. The result of the operation is
apparent in the next state.

The ASM chart in Fig. 8.5(b) mixes descriptions of the datapath and the controller, An ASM
chart for only the cantroller is shown in Fig. 8.5(c), in which the register operations are omit-
ted. In their place are the control signals that must be generated by the cani~ol unit to launch
the operations of the datapath unit. This chart is useful for describing the controller, but it does
not contain adequate information about the datapath (We'll address this issue later.)

ASM Block

An ASM block is a structure consisting of one state box and all the decision and conditional
boxes connected to its exit path. An ASM block has one entrance and any number of exit paths
represented by the strucme of the decision boxes. A ~ ' A S M chart consists of one or more
interconnected blocks. An example of an ASM block is given in Fig. 8.6. Associated with state

1 mfl J. loo

FIGURE a6
ASM bl&k

350 Chapter 8 Deslgn at the R e g , W Trr#lsbcr Lrvd

S-0 are two decision boxes and one d t i ~ n a l box. The diagram distinguishes the block with
dashed lines around the entire stnrcnlre, but this is not usually done, s h the ASM chan
uniquely defines each block h m ita shwture. A state box without any decision or condition-
al boxes constitutes a simple block.

Each block in the ASM chart d e s d b s the slate of the system dwhg one clmk-pulse in-
terval (i.e., the interval between two successive active edges of the c h k) . The opatiom with-
in the state and conditional boxes in Fig, 8,6(a] are initiated by a common clock pulse whw
the state of the controller transitions from S-0 to its next state. The same clwk pulse transfers
the system controller to one of the next states, SJ, 3-2, or S-3, as dictated by the b b q val-
ues of E and F. The ASM chm for the mtroller alone is shown in Fig. 8.W). The Moore-type
signal incrJ is asserted while tbe machine is in S-0; the Mdy-type signal Clear-R is em-
erated conditionally when the state is S-0 and E is asserted. In general, the Moore-typ ouputs
of the controller are generated unconditionally and are indicated w i h h a state box; the Mealy-
type outputs are generated conditionally and are indicated in tbe conditional boxes connected
to the edges that leave a decision box.

The ASM chart is M a r to a state diagram. Each state block is equivalent to a state in a
sequential circuit The decision h x is @vdent to the binary informaiion written along the
directed lines that cwnect two states in a state diagram. As a consequence, it is sometimes
convenient to convert the chart into a state diagram and then use sequential circuit prwdms
to design the mum1 logic. As m illustration, the ASM chart of Fig. 8.6 is drawn as a state di-
agram in Fig. 8.7. The states are symbolized by circles, with their binary values wrimn inside.
The directed lines indicate the conditions that determine the next state. The unconditional and
conditional operations that must be performed in the datapath unit are wt indicated in the state
diagram.

A binary decision box of an ASM chart can be simplified by labeling only the edge corre-
sponding to the asserted decision variable and leaving the other edge without a label. A further
simplification is to omit the edges corresponding to the state muitions tbat occur when a reset
condition is asserted. Output signals that are not asserted am nut shown on the cbaTt; the pres-
ence of the name of an output signal indicates that it is asserted.

Section 8.4 Algorithmic State Machines (ASMs) 351

The timing for all registers and flip-flops in a digital system is controlled by a master-clock gen-
erator. The clock pulses are applied not only to the registers of the datapath, but also to all the
flipflops in the state machine implementing the contsol unit. Inputs are also synchronized to
the clock, because they are normally generated as outputs of another circuit that uses the same
clock signals. If the input signal changes at an arbitrary time independently of the clock, we
call it an asynchronous input. Asynchronous inputs may cause a variety of problems, as dis-
cussed in Chapter 9. To simplify the design, we will assume that all inputs are synchronized
with the clock and change state in response to an edge transition.

The major difference between a conventional. flowchart and an ASM chart is in interpret-
ing the time relationship among the various operations. For example, if Fig. 8.6 were a con-
ventional flowchart, then the operations listed would be considered to follow one after mother
in sequence: First register A is incremented, and only then is E evaluated. If E = 1, then reg-
ister R is cleared and control goes to state S-3. Otherwise (if E = O), the next step is to eval-
uate F and go to state 3-1 or S-2. In contrast, an ASM chart considers the entire bIock as one
unit. All the register operations that are specified within the block must occur in synchronism
at the edge transition of the same clock pulse while the system changes from S-0 to the next
state. This sequence of events is presented pictorially in Fig. 8.8. We assume positive-edge
triggering of all flip-flops, An asserted asynchronous reset signal (reset-b) transfers the con-
trol circuit into state S-0. While in state 3-0, the control circuits check inputs E and F and
generate appropriate signals accordingly. If reset-b is not asserted, the following operations
occur simultaneously at the next positive edge of the clock:

1. Register A is incremented.
2. If E = I , register R is cleared.
3. Control bansfers to the next state, as specified in Fig. 8.7

Note that the two operations in the datapath and the change of state in the control logic occur
at the same time. Note also that the ASM chart in Fig. 8.6(a) indicates the register operations
that must occur in the datapath unit, but does not indicate the contra1 signal that is to be formed
by the control unit. Conversely, the chart in Fig. 8.6@) indicates the control signals, but not the
datapath operations, We will now present an ASMD chart to provide the clarity and complete
information needed by logic designers.

Positive edge of Clock

Clack k
FIGME 8.8
Transitim between stat-

Chapter 8 DeiZgn at the Register Trader bd

Algorithmic state machine and datapath (ASMD) cham wexe &vela@ to clarify the infor-
d o n displayed by ASM charts armd to provide an effective -1 for k i g i n g a corn1 anit
for a given datapath unit. An ASMD chart Wcrs from an ASM d m in three important ways:
(I) An ASMD chart does not list register operations withia a state b x , (2) the e&p of au
ASMD chart are annotated with register operations that a concumat wih h state transition
indicated by the edge, and (3) an ASMD chart includes oonditiwal boxes identifying the sig-
nals which control the register operations that annotate tbe of the cbart. Thus, MASMD
char4 ms&es mgister operattons wifh sta& tmnsUions rorker rkmr with states.

Wguers form an ASMD chart in a threestep p m hat cream an smnoiared aud com-
pletely specified ASM chart for the controller of a dahpath unit. The st- are to (1) form
an ASM chart displaying only how the inputs to the controller determine its state transitions,
(2) convert the ASM chart to an ASMD chart by annotating the of the ASM chart to in-
dicate the concurrent register operations of the datapath unif and (3) modify h ASMD chart
to identify the control signal8 that rn generated by the conmller and tbat cause the indicated
register operations in the drrtapath unit. The ASMD chart produced by this process c M y and
compleaely specifies the finite state machine of the controller a d iddjieg the register oper-
dons of the given datapath.

One impmmtuse of a state machiaeis to c o n ~ l r e ~ ~ ~ ~ ~ s on adampthinase
quential machine tbat has been padtiod into a cwfroller d a datqab An ASMD chart links
the ASM chart of the conlmlIer to the datapath it controls in s lllanner that sew& as a univer-
sal model representing all synchronous digital hardware design. ASMD charts help clarify the
&sign of a sequential machine by sqmating the design of its dataptb from the design of tbe
controller, d d e maintaining a clear relatiomhip W e e n the two units. Register m o m rba
occur concumntly with state transitions are annotated on a palh of the chart, m&er tban in
state boxes or in conditional boxes on the path, because these registem am noo part of tbe con-
troller. The outputs generated by the contFoller are the signals fht contml the reghem of rhe
datapath and cause the register operations annotated on he MMD chart.

8 . 5 DESIGN E X A M P L E

We will now p m n t a simple example demmmhg the use of the ASMD chat and the regis-
& ttansfer representation. We start h m Ihe W sp&aticms of a system d proceed with
t h e d e v e l ~ o f a a a p p m p r i a o e A S M D ~ f r w n w h i c h t h e ~ ~ i s t h e a d e s i g n e d

The datapatb unit is to consist of two JK f lp - E and F, ',and o r ~ c fwr-bit bimy count-
er AC3: 01. The individual flip-flops in A am dewtcd by A> A2, A d A& with Aj holding
the most significant bit of the count. A signal, Start, initiates the system's operation by clear-
ing the counter A and flipflop F. At each subsequent clock pulse, Uic counter is h m e n t e d
by 1 until the operations stop. Counter bits A2 and A3 determine the sequence of opmions:

IfA2 = 0, E is ckmd to 0 and th count oontinues.
HA2 = 1, Eissetto l;then,ifAg = O , t h e c a u n t ~ ~ ~ e s , b u t i f A ~ = 1, Fissetto
lon~nextclockpulseandthsystemstopscounting.

Section 8.5 Design bample 353

Then, if Start = 0, the system remains in the initial state, but if Start = 1, the opera-
tion cycle repeats.

A blcck diagram of the system's architecture is shown in Fig. 8.9(a), with (1) the registers
of the datapath unit, (2) the external (primary) input signals, (3) the status signals fed back
from the datapath unit to the control unit, and (4) the control signals generated by the control
unit and input to the datapath unit. Note that the names of the control signals clearly indicate
the operations that they cause to be executed in the datapath unit. For example, clr-A-F clears
registers A and F, The name of the signal reset-b (alternatively, reset-bar) indicates that the
reset action is active low. The internal details of each unit are not shown.

ASMD Chart

An ASMD chart for the system is shown in Fig. 8.9(b) for asynchronous reset action and in
Fig. 8Nc) for synchronous reset action. The chart shows the state transitions of the controller
and the datapath operations associated with those transitions. The chart is not in its find form,
for it does not identify the control signaIs generated by the controller. The nonblmking Ver-
ilog operator (< =) is shown instead of the arrow (+) for register transfer operations because
we will ultimately use the ASMD chart to write a Verilog description of the system.

When the reset action is synchronous, the transition to the reset state is synchronous with
the clock, This transition is shown in the diagram, but all other synchronous resetpaths aw omis-
ted for c l a r i ~ . The system remains in the reset state, S-idle, until Stapt i s asserted. When that
happens (i.e., Start = I), the state moves to Sl, At the next clock edge, depending an the
values of Az and A3 (decoded in a priority order), the state returns to S-I or goes to 3-2. From
5-2, it moves unconditionally to S-idle, where it awaits another assertion of Start.

The edges of the chart represent the state transitions that occur at the active [i.e., synchro-
nizing) edge of the clock (e.g., the rising edge) and are annotated with the register operations
that are to Dccur in the datapath. With Start asserted in S-idle, the state will transition to S-1
and the registers A md F will be cleared. Note that, on the one hand, if a register operation is
annotated on the edge leaving a state box, the operation occurs unconditionally and will be
controlled by a Moore-type signal. For example, registerA is incremented at every clack edge
that occurs while the machine is in the state S-1. On the other hand, the register operation set-
ting register E annotates the edge leaving the decision box for P I Z . The signal controlling the
operation will be a Mealy-type signal asserted when the system is in state SJ and A2 has the
value 1. Likewise, the control signal clearing A and F is asserted conditionally: The system is
in state $-idle and Start is asserted.

In addition to showing that the counter is incremented in state S-1, the annotated paths
show that other operations occw conditionally with the same clock edge:

Either E is cleared and control stays in state S-1 (AZ = 0) or

E is set and control stays in state S-I (AaA3 = 10) or

E is set and control goes to state S-2 (AzA3 = 11).

When control is in state S-2, a Moore-type contsol signal must be asserted to set flip-flop F to
1, and the state returns to S-idle at the next active edge of the clock.

Status signals

Note: A3 denot~ A[3],
A2 denotar A[2],
<= &now nonblocking assignment
met-b denotes activ~low reset condition

reset-b

<= 1

WURE 8.9
(b)

(a) Blodr dimgnm for design emmplt
(b) MMD chart for contrdler state tmdlhs, loynchronour m M
(c) MMD chart for contmlkr state mndhs, spdmmus d
(d) ASMD clwrt for a completely qmdfkd -, =yn&rrmau reset

Section 8.5 Deslgn Example 355

The third and final step in creating the ASMD chart is to insert conditional boxes for the sig-
nals generated by the controller or to insert Moore-type signals in the state boxes, as shown in
Fig. 8.9(d). The signal cir-A-F is generated conditionally in state S-idle, incr-A is generated
unconditionally in S-I, clr-E and set-E are generated con&tionally in 3-1, and set-F is gen-
erated unconditionally in S-2. The ASM chart has three states and three blocks. The block as-
sociated with S-idle consists of the state box, one decision box, and one conditional box. The
block associated with S-2 consists of only the state box. In addition to clock and reset-b, the
control logic has one external input, Start, and two status inputs, A2 and A3.

In this example, we have shown how a verbal (text) description (specification) of a design
is translated into an ASMD chart that completely describes the controller for the datapath, in-
beating the control signals and their associated register operations. This design example does
not have a practical application, and in general, depending on ~e interpretation, the ASMD chart
produced by the three-step design process for the contmller may be simplified and formulaTed
differently. However, once the ASMD chart is established, the procedure for designing the
circuit is straightforward. In practice, designers use the ASMD chart to write Verilog models
of the controller and the datapath and then synthesize a circuit directl~fiom the Verilog de-
scription, We will first design the system manually and then write the HDL description, keep-
ing synthesis as an optional step for those who have access to synthesis tools.

Thing Sequence

Every block i n anASMD chart specifies the signals which control ?he operations that are to be
initiated by one common clock pulse. The control signals specified within the state and con-
&tianal boxes in the block are famed while the controller is in the indicated state, and the an-
notated operations occur in the datapath unit when the state makes a lransition along an edge
that exits the state. The change from one state to the next is performed in the control logic. In
order to appreciate the timing relationship involved, we wiIl list the step-by-step sequence of
operations after each clock edge, beginning with an assertion of the signaI Start until the sys-
tem returns to the reset (initial) state, S-idle.

Table 8.3 shows the binary values of the counter and the two flip-flops after every dock
pulse. The table also shows separately the status of A 2 and A3, as well as the present state of
the controller. We start with state S-1 right after the input signal Start has caused the counter
and flip-flop F to be cleared. We will assume that the machine had been running before it en-
tered S-idle, instead of entering it from a reset conbtion. Therefore, the value of E is assumed
to be 1, because E is set to 1 when the machine enters S-2, before moving to S-idle (as shown
at the bottom of the table), and because E does not change during the transition from S-idle to
S-1. The system stays in state S-1 during the next 13 clock pulses. Each pulse increments the
counter and either clears or sets E. Note the relationship htween the time at which A2 be-
comes a 1 and the time at which E is set to 1. When A = (A3 A2 AI Ao) 001 1, the next (4th)
clock pulse increments the counter to 0100, but that same clock edge sees the value of A2 as
0, so E remains cleared. The next (5th) pulse changes the counter h m 0100 to 0101, and be-
cause A2 is equal to 1 before the cbck puke arrives, E is set to 1. Similarly, E is cleared to 0
not when the count goes from 011 1 to 1000, but when it goes 1000 to 1001, which is
when A2 is 0 in the present value of the counter.

356 Chapter 8 Design at the Register Transfer LeveI

Table 8.3
Sequence of Operations fw Design Example

Counter Fli p F l a ps

When the count reaches 11 00, both A2 and A3 are equal to 1. The next clack edge incre-
ments A by 1, sets E to 1, and transfers control to state S-2. Cmml stays in S-2 for only one
clock period. The clock edge associated with the path leaving S-2 sets fipflop F to 1 and
transfers control to state S-idle. The system stays in the initial state S-idle as long as Start
is equal to 0.
From an observation of Table 8.3, it may seem that the operations performed on E are

delayed by one clock pulse. This is the difference between an ASMD chart and a conven-
tional flowchart. If Fig. 8.9(d) were a conventional flowchart, we would assume that A is
first incremented and the incremented value would have been used to check the status of A2.
The operations that are performed in the digital hardware as specified by a block in the
ASMD chart occur during the same clock cycle and not in a sequence of opehorn following
each other in time, as is the usual interpretation in a conventional flowchart, Thus, the value
of A2 to be considered in the decision box is taken from the value of the counter in the
present state and before it is incremented. This is because the decision box for E belongs
with the same block as state S-1. The digital circuits in the control nnit generate the signals
for all the operations specified in the present block prior to the arrival of tk the ccleckpulsc.
The next clock edge executes all the operations in the registers and flipflops, including
the flip-flops in the controller that determine the next state, using the present values of the
output signals of the controller. Thus, the signals that control the operations in the datapath
unit are formed in the controUer in the clock cycle (control state) preceding the clock edge
at which the operations execute.

Section 8.5 Design Example 357

Controller and Datapath Hardware Deslgn

The ASMD chart provides all the information needed to design the digital system-the datapath
and the controller. The actual boundary between the hardware of the controller and that of the
datapath can be arbitrary, but we advocate, fnst, that the datapath unit contain only the hard-
ware asscciated with its operations and the logic required, perhaps, to form status signals used
by the controller, and, second, that the control unit contain all of the logic required to gener-
ate the signals that control the operations of the datapath unit. The requirements for the design
of the datapath are indicated by the control signals inside the state and conditional boxes of the
ASMD chart and are specified by the annotations of the edges indicating datapath operations.
The control logic is determined from the decision boxes and the required state transitions. The
hardware configuration of the datapath and controller is shown in Fig. 8.10.

D ~signZxmnp b
r----C--------------------rr------------1---------1---------------------

i Controlkr
1

I

clock

FlCURE kt9
Datapath and contralter far design e z m p k

Chapter 8 Otsign at the Register Transfer level

Note that the input sign& ofthe control unit am the extend @aimary) inputs [Start, reset- b,
and cluck) and the status signals from the datapath (A2 and A3). The status signals p v i d e in-
fmmtion about the present condition d the datapath. This infomalion, together with the pri-
maty inputs md information about the present state of the machine, is used to fom the output
of the conlroller and the value of the next state. The outputs of the controller are inputs to the
datapath and determine which operations will be executed when the clock underps a transi-
tion. Note, also, that the state of the control is not an output of tbe control unit, even if the en-
tire design is mcapsulated in only one module.
ThecmtrolsubsystemisshowninFig. 8.10withdyits~atwlautputs,w5thnamesmatch-

ing h s e of the ASMD cham The W e d design of h controller is considered subsqumly.
The dampath unit consists of a fow-bit binary wunte~ aad two JK flip-flops, The counter is sim-
ilartotheme shown inFig, 6.12, exmpttbatadditional iateraal arc required fur the syn-
chKnrous clear cpmtion. The is inmemated with every clock puk when the cmtm11er
s ~ i s S , I . I t i s c l e a r e d o n l y w b e n ~ ~ l i s ~ ~ S ~ ~ S w ~ t i s e q u a l ~ 1.Thelogicfor
the signal c1rA-F will be included in the anhvller and requires an AM) gate to pamutee that
both conditions are present. Similarly, we we athipate that the controHer will use AND p e s to
form sigraals serJ and cfrJ. Depeoding oo whether the cmtmUer is in state S-1 and whether A2
i muted, s e t 1 controls flipflop F and is m a t e d unconditionally during state S-2. Note that
alI fbpfl op6 and registers, Muding tbe flipflops in the control unis, use a common clmk

A digital system is represented at he redster transfer level by specifying the registers in the
system, the operations performed, and the control sequence. The register opmtions and con-
trol i n f o d o n can be specified with an ASMD chart. It is convenient to separate the conml
logic and the register operations for the -ti. The ASMD chart provides this separation aad
a char sequence of steps to design a c o d e r for a datapath. The conrtol information and
register bamfeb operations can also be represented separately, as shown ia Fa. 8.11. The state
diagram specifies the control wpme, and the mgister opedons are represented by the reg-
ister transfer notation introdwed in Section 8.2. The state &tion and the signal controlling
the register opwation are shown with the operation. This qmenhtiun is an alternative to the
-on of the system d a c r h d in the ASMD chart of Fig. 8.9(d). Only the ASMD chart
is d y needed, but the state diagram for h conmUer is an a l d v e representation that is
us&l in manual design. The information for the state d i m is taken M y h r n the ASMD
chart. The state names are specified in each state box. ' be conditions that cause a change of
state are specified inside the dhmn&shaped decision boxes of the ASMD chart and are used
to annotate the state diagram. Tfie directed lines between states and the condition associated
with each follow the same path as in the ASMD chart. The register transfer operations for each
of the three states are listed following the name of the state. They are taken from the state
boxes or the annotated edges of the ASMD chart.

Stmte Tabk

The state diagram can k converted into a state table from which the sequential circuit of the
controller can IE designed. Fmt, we must assign binary values to each state in the ASMD
crt. For n flipflops in the control sequential circuit, the ASMD chart can wmnmdak up

Section 8.5 Design Example 359

S i d l e + SJ, ctrJ1J A+ 0, F+"

5-1 S-1, incr-A: A - A + 1

if (A2 = I) then set-E: E + 1
if(A2 = 0) then c1r-E: E + 1)

5-2 + S-idle, set-l? F + 1

(b)

FIGURE 8.1 1
Register transfer-low1 description of dedgn example

to 2" states. A chart with 3 or 4 states requires a sequential circuit with two flip-flops. With 5
to 8 states, there is a need for three flip-flops, Each combination of flip-flop values represents
a binary number for one of the states.

Astute table for a controller is a list of present states and inputs and their corresponding next
states and outputs. In most cases, there are many don't-care input conditions that must be in-
cluded, so it is advisable to mange the state table to take those conditions into consideration.
We assign the following blnary values to the three states: S-idle = 00,s-1 = 01, and S-2 = 1 1.
Binary state 10 is not used and will be treated as a don't-care condition. The state table corre-
sponding to the state diagram is shown in Table 8.4. Two flip-flops are needed, and they are

Table 8.4
State TuMe for the ConkroIIer of Flg. 8.10

Present Next
State Inputs State Outputs

Present-State & > - , *II

Symbol GI Go S t m 1 2 GI Go 8 $ # b k
S-idle 0 0 0 X X 0 0 0 0 0 0 0
S-idle 0 0 1 X X 0 1 0 0 0 1 0
s-1 0 1 X O X 0 1 0 1 0 0 1
s-1 0 1 X I 0 0 1 1 0 0 0 1
S-I 0 1 X 1 1 1 1 1 0 0 0 1
s-2 1 1 X X X O O 0 0 1 0 0

Chapter 8 Design at the Reglster Transfer Lwel

labeled GI and Go. There are three inputs and five outputs. The inputs are taken fmm the wn-
ditions in the decision boxes. The ou@& depend on the inputs and the present state of the can-
tml. Note that there is a row in the Eable for each possl%k mnsition Wmen s~@. Initial state
00 gws to state 01 or stays in 00, depding on the value of input Start. The dm two inputs
are marked with don't-care X's, as they do not deL the next state in this case. MI&. the
system is in binav state 00 with Start = I , the control unit provides an output labeled ctr_A_F
to initiate the required regiskr operations. The W i t i o n h m binary state 01 c k p d s w inputs
A2 and A3. The system goes to binary state 11 only if A2A3 = 11; o i h m h , it mmim in
binary a t e 01. Finally, binary state 11 gms to 00 independently of the input variables.

Control Loglc

The @ure for designing a sequential circuit starting from a state table was presented in
Qlapter 5. If this procedure is applied to Table 8.4, we need to use five-variable maps to sim-
plify the input equations. This is because tbm are five variables listed under the present-state
and input columns of the tabIe. Instead of using maps to simplify the input equations. we can
obtain them directly from the st@ table by inspectioa To design the sequential circuit of the
controller with D flip-flops, it is necessary to go over the next-state c u 1 ~ 31 tbe state table
and derive dl the conditions that must set each flip-flop to 1. From Table 8.4. we note tbat the
next-state colurnn of GI has a single 1 in tbe fifth row. 'Ihe D input of £lip-flop GI must be equal
to I during present state S-I when both inputs A2 and A3 are equal to 1. This condition is
expressed with the D flip-flop input equation

Similarly, the next-state column of has four f 's, and the adition fix settiag this flipflop is

Dm = Stars S-idle + 8-1
To derive the five output functions, we cap exploit the fact that binary state 10 is not wed,-
which simplifies the equation for c l r M and mab1e.s us to obtain the following simpWd set
of output equations:

clr-A-F = Start S-idle

incr-A = 8-1

The logic diagram showing the internal detail of he controller of Fig. 8.10 is dmwo in Fig 8. t 2;
Note that although we derived the output equations from Table 8.4, they can a h be obtained
directly by inspection of Fig. 8.9(d), This simple example illustram the manual design of a con-
troller for a datapath, using an ASMD chart as a starting point. The fact that synthesis tools au-
tomatically m u t e these steps should be appreciated

Section 8,6 HDL Description of Design Exr-de 361

Start

w2

A3
A2

I 1 7

W R E 8.1 2
Logic &gram of the cantpol unit for F g . 8.1 0

8.6 HDL DESCRIPTION OF DESIGN E X A M P L ---A . -

In previous chapters, we gave examples of HDL descriptions of combinational circuits,
sequential circuits, and various standard components such as multiplexers, counters, and reg-
isters. W e are now in a position to incorporate these components into the description of a spe-
cific design. As mentioned previously, a design can be described either at the structural or
behavioral level. Behavioral descriptions may be classified as being either at the register bans-
fer level or at an abstract algorithmic level. Consequently, we now consider three levels of
design: smctural description, RTL description, and algorithmic-based behavioral description.

The strucmral description is the lowest and most detailed bvel. The digital system is spec-
ified in terms of the physical components and their interconnection. The various components
may include gates, flip-flops, and standard circuits such as multiplexers and counters. The de-
sign is hierarchlcauy decomposed into functional units, and each unit is described by an WDL
module. A top-level module combines the entire system by instantiating all the lower level
modules. This style of description requires that the designer have sufficient experience not
only to understand the functionality of the system, but also to implement it by selecting and con-
necting other functional elements.

The RTL description specifies the digital system in terms of the registers, the operations
performed, and the control that sequences the operations. This type of description simplifies
the design process because it consists of procedural statements that determine the relationship
between the various operations of the design without reference to any specific structure. The

362 Chapter8 Wlgn at the Reg mansfer W

RTL description implies a certain hardware configumtim amwg tbe registers. allouing the
designer to m e a design that can be s y n h s h i automatially, rather than manually. into stan-

dard digitaI components.
The a lgor i th ic -hed bshavioml description is the most abstmt level, desmib'hg the func-

tion of the design in a p W W algorithmic fm similar to a programming language. It dow nor
provide any detail on how the design i to be implemented with hardware. Tlae algorithmic-bad
hhavioral description is most a- for s irnWg complex systems in o&r to verify &
sign ideas and explore mdmffs. I h x i p i i o ~ ~ ~ at tbis level are accessibk to nontechnical users
who u m h m d programming languages. Some dgmithms, however, might not be syntkidle.
We will now ilustrate the RTL and mctural descriptions by using the design example of

the previous section. The design example will m e w a model of &g style for future ex-
amples and will exploit alternative syntax options supported by revisions to the Verilog lan-
guage. (An algorithmic-based description is illustrated in Section 8.9.)

Ttre block diagram in Fig. 8.10 describes the design example. An HDL description d the
design example can be writtea as a single RTL denripti011 in a Vedog module or as a top-
level mdule having instantiations of fieparate modules for the controller and the datapath. The
former option simply ignores the boundaries between the functional units: the modules in the
latter option establish the boundaries shown in Fig, 8,9(a) and Fig. 8.10. We advocare the sec-
ond option, because, in general, it disringuishes more clearly between the controller and the data-
path, This choice also allows one to easily substitute alternative controllers for a given datapafh
(e.g., replace an RTL model by a structural model). The RTL description of the design exam-
ple is shown in HDL Example 8.2. The dwcription follows the ASMD chan of Fig. 8,9(d),
which amins a complete degcription of tb mtmllcr, the datapath d the M a c e between
them (i.e., the outpu?~ of the controller a d the status signals). Likewise, our description has
three modules: DesignBample-RTL, ContmlierJTL, and Batqmth-RZ. The descriptions
of the conm11er and the dabpath units are taken direcff y fmm Fig. 8.9(d). DesignJhmpicJwz
declares the input and output ports of the module and instantiates ContmllerJ?TL and
Datapath-RTL. At this stage of the description, it is important to remember to declare A as a vec-
tor. Failm to do so will produce port rnismtch e r m when the &scriptions are compiled to-
gether. Note that the status signah A121 and A131 are passed to the cmmiler. The primary
(external) inputs to the controller are Starf, clock (to synchronizle the system), and reset-b. The
ecrivelow input signal ~ s e t J is needed to initialize the state of h wneoller to S-idle. With-
out that signal, &e cont10Uer could not be placed in at Irnowa initid state.

The controller is descxibed by three cyclic (always) behaviors. An edge-sensitive khavior'
updates the state at the positive edge of the clock, depending on whether a reset condition is
asserted. Two level-sensitive behaviors describe the combinational logic for the next state and
the ourputs of the conmller, as specified by the ASMD chart, Notice that the description in-
cludes default assignments to all of lhe outputs (e.g., set> = 0). This approach allows the
c d e of the case logic to be simplified by mpssing only explicit of the variables
(i.e., values are assigned by exception). Tbe approach also ensures that every path through the
assignment logic assigns a value to every vmhbIe. Thus, a synthesis tool will interpret the

Section 8.6 HDL Description of Pesign Exsnrpk

logic to be combinational; failure to assign a value to every variable on every path of Iogic im-
plies the need for a transparent latch (memory) to implement the logic. Synthesis tools will pro-
vide the latch, wasting silicon area.

The three states of the controller are given symbolic names and are encoded into binary
values. Only three of the possible two-bit patterns are used, so the case statement for the next-
state logic includes a default assignment to handle the possibility that one of the three assigned
codes is not detected. The alternative is to allow the hardware to make an arbitrary assignment
to the next state (next-state = 2 'bx;). Also, the first statement of the next-state logic assigns
next-state = S-idle M guarantee that the next state is assigned in every thread of the logic. This
is a precaution against accidentally forgetting to make an assignment to the next state in every
thread of the logic, with the result that the description implies the need for memory, which a
synthesis tool will implement with a transparent latch.

The description of Datapath-RTL is written by testing for an assertion of each control sig-
nal from Confroller_RTL. The register transfer operations are displayed in the ASMD chart
(Fig. 8.9(d)). Note that nonblocking assignments are used (with symbol <=) for the register
transfer operations. This ensures that the register operations and state transitions are concur-
rent, a feature that is especially crucial during control state S-1, In this state, A is increment-
ed by 1 and the value of A2 (A[2]) is checked to determine the operation to execute at register
E at the next clock. To accomplish a valid synchronous design, it is necessary to ensure that
A[2] is checked before A is incremented. If blocking assignments were used, one would have
to place the two statements that check E first and the A statement that increments last. How-
ever, by using nonblocking assignments, we accomplish the required synchronization without
being concerned about the order in which the statements are listed. The counter A in
Datapath-RTL is cleared synchronously because clr-A-F is synchronized to the clock.

The cyclic behaviors of the controller and the datapath interact in a chain reaction: At the
active edge of the clock, the state and datapath registers are updated. A change in the state, a
primary input, or a status input causes the level-sensitive behaviors of the controller to update
the value of the next state and the outputs. The updated values are used at the next active edge
of the clock to determine the state transition and the updates of the datapath.

Note that the manual method of design developed (1) a block diagram (Fig. 8.9(a)) show-
ing the interface between the datapath and the controller, (2) an ASMD chart for the system (Fig.
8.9(d)), (3) the logic equations for the inputs to the flip-flops of the controller, and (4) a circuit
that implements the controller (Fig. 8.12). In contrast, an RTL model describes the state Wan-
sitions of the controller and the operations of the datapath as a step towards automatically syn-
thesizing the circuit that implements them. The descriptions of the datapath and controller are
derived directly fiom the ASMD chart in both cases,

IIDL Example 8.2

Il RTL description of design example (see Fig. 8.1 1)
module Design-Example-RTL (A, E, F, Start, clock, reset-b);

I t Specify ports of the top-level module of the design
I1 See block diagram, Fig. 8.10
output [3: 01 A;
output E, F;

W Chapter 8 Design at the T m * L e d

Input Start, clock, reset-b;
I/ Instantiate controller and datapath units
Cmtroller_RfL MO (set-€, clr-E, set-F, clr-A-F, Incr-4,A[2J, 431, Start, dock,

reset-b 1;
Datapath-RTL Mi (A, E, F, setE, dr-E, se-F, dr-A-F, inCr-A, dodrh

endmodule
module Controller+RIL (-Et dr-E, *F, dr-A-F, incr-A, A2, A3, Start, dock,
reset-b);
output reg set-€, dr-E, set-F, clr-A-F, incr_A;
Input Start, A2, A3, dock met-b;
mg (1 : Oj state, next-state;
parameter S-idle = 2'bOO, S-1 = 2'bOlt S-2 = 2 b l I : I/ State codes
always @ (posedge dack or negedge re-b) It Sbte &amitions (edge smiWe)
H (reset-b == 0) state c= S-idle:
else state c= next-state;

I1 Code ngxtdte loglc directly from ASMD chart (Fig. 8.M)
always @ (state, Start, A2, A3) begln I1 Next-state logic (level sensitive)
nextstate = S-ldle;
case (state)

S-Idle: If (SQrt) nextstate = S-7 ; else nex!-stab = S-Idle:
3-1 : If (A2 a A3) --state = S-2; e b nextnextstate = S-1;
S-2: next-staka = S-idle:
deFaust: nex-state = $_idle;

endcase
end
I/ Code output logb dlrectly frwn ASMD chart (Fig. 8.W)
a m @ (a te , a r t , A2) I W n
seLE = 0: I/ default assignments; assign by exception
dr-€ = 0;
set-F = 0;
clr-A-F = 0;
incr-A = 0;
case (state)
S-idle:
s-1 :
s-2:

endcase
end

endmodule
module Datapath-RTL (A, E, F, set-E, dr-E, wt-F, dr-LF, Incr-A, clock);
output reg 13: 01 A: 11 reglsbr fm counter
wtputreg E,F: 11 flags
input set-E, clr-E, wt-F, clr-A-F, inck_A, dock;
I1 Code reglster transfer opemtiona directfy from ASMD chart (Fig. 8.9(d))

If (Start) dr-A-F 1 ;
begln in-A = 1 ; if (A2) set-€ = 1; else clr-E =I 1 ; end
set-F = 1 ;

Section 8.6 HDL Description of Design Example 365

always @ (posedge clock) begln
H (set-E)
If (clr-E)
r set-^)
a (clr-A-F)
if (incr-A)

end
endmodule

E <= 1;
E c= 0;
Fc= 1;
begln A <= 0; F c= 0; end
A c = A + .1;

Testing the Design Dcscrlpthm
The sequence of operations for the design example was investigated in the previous section.
Table 8.3 shows the values of E and F while register A is incremented. It is instructive to de-
vise a test that checks the circuit to verify the validity of the HDL description, The test bench
in HDL Example 8.3 provides such a module. (The procedure for writing test benches is ex-
plained in Section 4.12.) The test module generates signals for Ssart, clock, and reset-b, and
checks the results obtained from registers A, E, and F. Initially, the reset-b signal is set to 0 to
initialize the controller, and Start and clock are set to 0. At time t = 5, the reset-b signal is de-
asserted by setting it to 1, the Start input is asserted by setting it to 1, and the clock is then re-
peated for 16 cycles. The $monitor statement displays the values of A, E, and F every 10 ns.
The output of the simulation is listed in the example under the simulation log. Initially, at time
t = 0, the values of the registers are uaknown, so they ar(: marked with the symbol x, The first
positive clock transition, at time = 10, clears A and F, but does not affect E, so E is unknown
at this time. The rest of the table is identical to Table 8.3. Note that since Start is still equal to
1 at time = 160, the last entry in the table shows that A and F are cleared to 0, and E does not
change and remains at I . This occurs during the second transition, from S-idle to S-I.

HDL Example 8 3

I/ Test bench for design example
module t-Design-Example-RTL;
w!3 Start, clock, reset-b;
wlra [3: 0] A;
wlre E, F;
I1 Instantlate design example
Desig n-Example-RTL MO (A, E, F, Start, clock, reset_b);
It Describe stimulus waveforms
lnltlal#500 $ftnlah; 11 Stopwatch
lnltlal
begln

reset-b = 0;
Start = 0;
clock = 0 ;
#5 reset-b = 1; Start = 1;
repeat (32)

#5 clack = - dock; /I C h k werator
end

end
initial
$monitor("A=%bE=%bF=%bfjme=W,A,E,F,$time);

endmodule
Simulation log:
A = x m E=xF=xt ime=O
A=OOOOE=xF=Otime= 10
A=0001 E=OF=Otirne=20
A=OOtOE=OF=Otime=30
A=W11 E=OF=O?ime=40
A=OlOOE=OF=Otime=50
A=0101 E = 1 F=Otlme=Hl
A = 0 1 1 0 E = l f=Olme=70
A=0111 E = l F=Otlme=80
A=lOOOE=l F=Otlme=90
A=1OOlE=OF=Otlme=I00
A=1O1OE=OF=O~nae=110
A = l O l l E=OF=Otim=120
A=1100E=OF~Otime=l30
A=1101 E = 1 F=Otime=140
A = 1101 E = 1 F = 1 time= 150
A=0000E=1 F=Otime=160

-- -

Waveforms produced by a shuhion of Design-eeWZ with the test b e h are shown
in Fig. 8.13. Numerical values are shown in hexadecimal format. The muh are m t e d to call
attention to the relationship h e e n a control Bignal and the O@M that it mws to execute.
For example, the controller asseas s e t 2 for one clock cycle h$uw the clock edge at which E is
set to 1. Likewise, setJ asserts during the clock cycle lxfore the at which F is set to 1. Also,
c l r4-F is formed in the cycle before A and F are cleared. A more thorwgh vedkation of
&dgnJmmpk-Rn, would mfm that ih machine recovers frm a m on the fly (i.e,, a r e w
that is asserted randomly after the machine is operating). Nate that the signals in the output of the
simulation have h e n listed in groups showing (I) clock and ~ s e t J , (2) Stort and the status
inputs, (3) the state, (4) the control signals, and (5) the data@ ngisters. It is strongly morn-
mended hat the state always be displayed, - this information is asmtial for verify& that
the machine is opemting comedy and forckhugging its dedption when it is rn & the chosen
bitlary state code, S-idle = 002 = OH, 3-1 = 012 = lA, andS-2 = 1 l2 = 3".

The RTL description of a design consists of pmcdural statements that d e t ~ tk func-
tional b v i o r of& d&W CW This-type of -on can be compiled by HDL synthesis
tools, from which it is possible to obtain tbe equivalent gatebye1 &mit ofthe design. It is also

F I C W 8.1 3
Slmulrtion results for dss.lgn example

possible to describe the design by its structure rather than its function. A simctural description
of a design consists of instantiations of components that define the circuit elements and their
interconnections. In this regard, a smctural description is equivalent to a schematic diagram
or a block diagram of the circuit. Contemporary design practice relies heavily on RTL de-
scriptions, but we will present a structural description here to contrast the two approaches.

For convenience, the circuit is again decomposed into two parts: the controller and the data-
path. The block diagram of Fig. 8.10 shows the high-level partition between these units, and
Fig. 8.12 provides additional underlying structural details of the controller, The structure of the
datapath is evident in Fig. 8.10 and consists of the flip-flops and the four-bit counter with syn-
chronous clear. The top level of the Verilog description replaces Design-Example-RTL, Conb-
mllerRTL., and DatupathJTL by Design-hmpleJTR, Controller~STR, and DataparhSTR,
respectively, The descriptions of Controller-STR and DatapathJm will be structural.

HDL Example 8.4 presents the structural description of the design example. It consists of a
nested hierarchy of modules and gates describing (1) the top-level module, Design-IhmpIeS???,
(2) the modules describing the controller and the datapath, (3) the modules describing the flip-
flops and counters, and (4) gates implementing the logic of the controller. For simplicity, the
counter and flip-flops are described by RTL models.

The top-level module (see Fig. 8.10) encapsulates the entire design by (1) instantiating the
controller and the datapath moduIes, (2) declaring the primary (external) input signals, (3) de-
claring the output signals, (4) declaring the control signals generated by the controller and con-
nected to the datapath unit, and (5) declaring the status signals generated by the datapath unit
and connect4 to the controller. The port list is identical to the list used in the RTL &scription,
The outputs are declared as wire type here because they serve rnaely to connect the outputs

Chapter U Design at the Register Transfer kvel

of the datapath module to the outputs of the top-level module, with their logic value being de-
t d e d within the datapath module,

The control module W b e s the circuit of Rg. 8.12. The outputs of the nvo flip-flops GI
and GO are declared as wlre dam type. GI and GO cannot be declared as reg data QW because
they are outputs of an instantiated D flip-flop. DGI and DGO arc undeclared identifim, it.,
implicit wires. The name of a variable is local to the module or procedural blmk in $ is
declared. Nets may not be declared within a procedwd block (eg., begin . , . end). The rule
to remember is that a variable must be a d&clared register type (e.g.. reg) if and only if irs value
is assigned by a procedural statenmt (LC, a bloclcing or d h l c i n g assignment statement aith-
in a prodm1 block in cyclic or shgbpass behavior or in the output of a saqmtid LDP].
The instantiated gates specify the c d i ~ t i o n a l part of the circuit. There we m-o nip-flop
input equations and three output equations. The outputs of the flip-flops GI and GO and tht inplrt
equations DGI and DGO replace output Q and inpul D in the insrantiarcd flip-flops. The D
flip-flop is tfien described in the next module. The strucnue of the data@ unit has direct in-
puts to the JK flip-flops. Note the correspondence between the modules of the HDL descrip-
tion and the structures in Figs. 8.9,8,10, and 8.12.

IIDL Example 8.4

I! Structural description of design example (Figs. 8.9(a), 8.92)
module Design-Example-STR
(output [3: OJ A, 11 V 2001 port syntax
output f, F,
Input Start, clock, re-

);

, . Controller-STR MO (dr-i-~i set-E, d&. set-F, i no~A, Start. A[2], A[3], clock,
resetb j;

Datapath-STR M I (A, E, F, elr_A_F, &€, dr_E, set-F, Incr-A, clock);
endmodule

module Controller-STR
{ output clr-A-F, setE. clr-E, s&-F, Incr-A,

lnput Start, A2, A3, clock, reset-b
1;

wire
parameter
wlre

GO, GI;
S-idle = TWO, S-1 = 2'b01, S-2 * 2'bt I;
w i , w2, w3;

not {GO-b, GO);
not (GI-b, GI);
buf (Incr-A, w2):
buf (setF, GI);
not (A2-b, A2);

Section 8.6 HDL Descrlptton of Design Example 369

or (D-GO, w l , w2);
and (wl, Start, GO-b);
and (clr-A-F, GO-b, Start);
and (w2, GO, GI-b);
and (set-E, w2, A2);
and (clr-El w2, A2-b);
and (D-G I, w3, w2);
and (w3, A2, A3);
0-flip-flop-AR MO (GO, D-GO, clock, reset-b);
D-flip-flop-AR M I (GI, D-GI , clock, reset-b);

endmadule

module Datapath-STR
(output [3: 01 A,
output El F,
Input clr-A-F, set-El clr-E, set-F, incr-A, clock

1;

JK-flip-flop-2 MO (El E-b, set-E, clr-E, clock);
JK-flip-flop-2 MI (F, F-b, set-F, clr-A-F, clock);
Counter-4 M2 (A, incr-A, clr-A-F, clock);

endrnodule

I/ ~ounier with synchronous clear

module Counter-4 (output reg 13: 01 A, lnput incr, clear, clock);
always @ (posedge clock)
If (clear) A <= 0; else If (iner) A <= A + 1 ;

endmodule

module D-flip-flop-AR (Q, D, CLK, RST];
output Q ;
input D, CLK, RST;
w Q;

always @ (posedge CLK, negedge RST)
If (RST == 0) Q e= I1bO;
else Q <= D;

endmodule

/ I Deseriptlon of JK flip-flop

module JK-flip-Rop-2 (Q, Q ~ o t , J, < K, , . CLK); .
output Q, Q-not;

370 Chapter 8 Dean at the Reglrtcr Transfer Levrl

Input J, K, CLK;
reg Q;
assign Q-not = -a;
a l w w @ (P-edge

((Jl K))
2'MO: Q c=Q;

2'Wl: Q<=l'bO;
2'blO: Q<=l 'b I ;
2'bll: Qc=-Q;

enduma
endmodule

modu lcr t-Design-Exam ple-STR;
mg start, clock, mt-b;
wire 13: 01 A;
wire E, F;

/ I Instadate design example

Design-Example-SlR MO (A, E, F, Start, dock, m - b) ;

11 W r i b e stimulus waveforms

Lnltial#500 $finish;
inltial
b a n

reset-b = 0;
Shrt = 0;
clock = 0;
#5 reset-b = 1; Start 3 1;
repeat (32)
besin
#5 clock = - clock;

end
end

inlttal
Emonltor ("A = %b E = %b F = %b time = %W, A, E, F, $Wmk

endmodula

i'l stopwatch

I f Clock generatw

~ e s m ~ ~ p t i m w a s ~ ~ ~ t h t ~ ~ ~ ~ ~ R T L ~ p t i 0 1 1
toproducetberesultsshowninFlg. 8 . 1 3 , ' I b e w l y ~ ~ i s t b e r c p ~ o f t h e
instantiation of the example from DesiguJbntpleJTL to DesignJWmpleflR. Tbe sim-
ulation mults for DesignJxampkJlR mntchcd those for D e s i g n - r n However,
acw~lprhnof the two ~ p t i 0 1 ~ 6 i a d i ~ that theKI'Lstyleiseasiatomite andwill lead
to results faster if synthesis tools are available to automatidy syntbiizc the regbtm, the
combinational logic, and their ipkmmwtilions.

Section 8.7 Sequential BInary Multiplier 371

8 .7 SEQUENTIAL B I N A R Y MULTIPLIER

This section introduces a second design example. It presents a hardware algorithm for binary
multiplication, proposes the register configuration for its implementation, and then shows how
to use an ASMD chart to design datapath and its controller.

The system we will examine multiplies two unsigned binary numbers. The hardware algorithm
that was develo@ in Section 4.7 to execute multiplication resulted in a combinational circuit mul-
tiplier with many adders and AND gates, requiring a large area of silicon for the implementation
of the algorithm as an integrated circuit. In contrast, in this section, a more efficient hardware
algorithm results in a sequential multiplier that uses only one adder and a shift register. The sav-
ings in hardware and silicon area come about from a trade-off in the space (hardware)-time
domain. A parallel adder uses more hardware, but forms its result in one cycle of the clock; a
sequential adder uses less hardware, but takes multiple dock cycles to form its result.

The mu~uplication of two binary numbers is done with paper and pencil by successive lie.,
sequential) additions and shifting, The process is best illustrated with a numerical example. Let
us multiply the two binary numbers 10 11 1 and 100 11:

10 1 1 1 multiplicand
1001 1 multiplier
10111

101 11
00000

00000

437 1101 10101 pmduct

The process consists of successively adding and shifting copies of the multiplicand. Succes-
sive bits of the multiplier are examined, least significant bit fust. If the multiplier bit is 1, the
multiplicand is copied down; otherwise, 0's are copied down, The numbers copied in succes-
sive lines are shifted one position to the left from the previous number. Finally, the numbers
are added and their sum forms the product. The product obtained from the multiplication of two
binary numbers of n bits each can have up to 2n bits, It is apparent that the operations of
addition and shifting are executed by the algorithm.
When the multiplication process is implemented with digital hardware, it is convenient to

change the process slightly, First, we note that, in the context of synthesizing a sequential ma-
chine, the add-and-shift algorithm for binary multiplication can be executed in a single clwk cycle
or over multiple clock cycles. On the one hand, a choice to form the product in the time span of a
single clock cycle will synthesize the circuit of a parallel multiplier like the we discussed in Section
4.7. On the other hand, an RTL model of the algorithm adds shifted copies of the multiplicand to
an accumulated partial product, The values of the multiplier, multiplicand, and partial product are
stored in registers, and the operations of shifting and adding their contents are executed under the
control of a state machine. Among the many possibilities for distributing the effort of multiplica-
tion over multiple clock cycles, we will consider that in which only one partial produGt is formed
d accumulated in a single cycle of the clock. (One alternative would be to use additional hardware

to form and accumulate two padid prwlucts in a dock cycle, but t&b wollkl q u h more lugic
~aadeithwhter~Csorad~~~)Insteadofprovidiag~circllitstostoaed
addsimultaumusiy asmanybinary Iwmbersashream l ' s intf ie~i t i s fesgexpensive
to provide only the hardware needed to sum two binary numbers and tbe prW prod-
ucts in a register. Second, instead of abifting the mdtiplicd oo the ldt, th - * being
f o m m e d i s ~ t o t h e F i g h t . T h i s l ~ ~ ~ ~ ~ p r o d u c t a a d ~ ~ ~ i a t h E l a q r d r e d
~~epositicnt~.'Ihini,~~~~tofobemdtiplieris0,~ism,aeed~add
a I l t l l s t o ? h e ~ p r o d u c t , s ~ d a i n g s o w i l f n o t a l ~ i t s ~ ~ .

A block diagram for the sequentid binary multiplier is s b w n in Pig. 8.14(a). a d rbe register
configuration of the datapath is shown in Fig. 8.14fb). The multiplicand is stored in re* B, * ' I

Sectbn 8.7 Sequential Binary Multlpller 373

the multiplier is stored in register Q, and the partial product is formed in register A and stored
in A and Q. Aparallel adder adds the contents of register B to registerd. The C flip-flop stores
the carry after the addition. The counter P is initially set to hold a binary number equal to the
number of bits in the multiplier. This counter is decremented after the formation of each par-
tial product. When the content of the counter reaches zero, the product is formed in the dou-
ble register A and Q, and the process stops. The control logic stays in m initial state until Start
becomes 1. The system then performs the multiplication. The sum of A and B forms the n mod
significant bits of the partial product, which is transferred to A. The output carry from the d-
dition, whether 0 or l , is transfemd to C. Both the partial product in A and the multiplier in
Q are shifted to the right, The least significant bit of A is shifted into the most significant po-
sition of Q, the carry from C ig shifted into the most significant position of A, and 0 is shift-
ed into C. After the shift-right operation, me bit of the partial product is transferred into Q
while the multiplier bits in Q are shifted one position to the right. In this manner, the least
significant bit of register Q, designated by Q[O], holds the bit of the multiplier that must be
inspected next. The control logic determines whether to add or not on the basis of this input
bit. The control logic also receives a signal, Zero, from a circuit that checks counter P for zero.
Q[0] and a m are status inputs for the control unit. The input signal Start is an external con-
trol input. The outputs of the control logic launch the required operations in the registers of
the datapath unit.

The interface between the controller and the datapath consists of the status signals and the
output signals of the controller. The control signals govern the synchronous register operations
of the datapath. Signal L o a d - ~ g s loads the intend registen of the datapath, Sh@-regs causes
the shift register to shift, Add-mgs forms the sum of the multiplicand and register A, and
Deer-P decrements the counter. The controller also forma output Ready to signal to the host
environment that the machine is ready to multiply. The contents of the register holding the
product vary during execution, so it is useful to have a signal indicating that its contents are
valid. Note, again, that the state of the control is not an interface signd between the control unit
and the datapath. Only the signals needed to control the datapath are included in the interface.
Puthg the state in the interface would require a decoder in the datapath, and require a wider
and more active bus than the control signals alone. Not good.

ASMD Chart

The ASMD chart for the binary multiplier is shown in Fig. 8.15. The intermediate form in
Fig. 8.15(a) annotates the ASM chart of the controller with the register operations, and the
completed chart in Fig. 8.15(b) identifies the Moore and Mealy outputs of the controler.
Initially, the multiplicand is in B and the multiplier in Q. As long as the circuit is in the ini-
tial state and Start = 0, no action occurs and the system re& in state S-idle with Ready
asserted. The multiplication process is launched when Start = 1. Then, (1) control goes to
state S d d , (2) register A and carry flip-flop C are cleared to 0, (3) registers B and Q are
loaded with the multiplicand and the multiplier, respectively, and (4) the sequence counter
P is set to a binary number n, equal to the number of bits in the multiplier. In state S-udd,
the multiplier bit in Q[O] is checked, and if it is equal to 1, the multiplicand in B is added to
the partial product in A. The carry fmm the addition is transferred to C. The partial product

374 Chapter 8 Design at the Register Trim* LHcl . - - - ,. . am. A . . . r

I 7 P <= P-l Decrement courcr

(C , A) < = A + B
Add rnultipldcnnd
to shipd sum

[C A, QJ <= {C, A, Q) >> f

&/it by one bit

FlGURE &IS
ASMD chart for Mnrry rnvhiplkr

i n A a a d C i s I e f i u n c h a n @ ~ Q C D J = O . T h e c o l ~ l l ~ P h ~ b y 1 r r g a d e ~ ~ 0 f
the value of Q[#], so D e c r y is foaned in st& S-udd as a Moore output of tbe conefoller.
In 11th cases, the next shte is S;Pk@. fr.gbtm C, A, and Q are ambhd into one compite
register CAQ, denoted by the -' {C, A, Q), and its wnknts arc shifted once to
the right to obtain a new partial pduct. Thie shift opation is qbl i zd in the flowchart
with the Verilog logical right-shift -01, >>. It is equivalent to the following statement
in register transfer notation:

Shift 6at CAQ, C t 0

Section 8.7 Sequential Binary Multiplier

In terms of individual register symbols, the shift operation can be described by the following
register operations:

Both registers A and Q are shifted right. The leftmost bit of A, designated by A,-1, receives
the carry from C, The leftmost bit of Q, or en-,, receives the bit from the rightmost position
of A in A*. and C is reset to 0. In essence, this is a long shift of the composite register CAQ
with 0 inserted into the serial input, which is at C.

The value in counter P is checked after the formation of each partial product. If the contents
of P are different from zero, status bit Zem is set equal to 0 and the process is repeated to form
a new partial product. The process stops when the counter reaches 0 and the controller's status
input Zeru is equal to 1. Note that the partial product formed in A is shifted into Q one bit at a
time and eventually replaces the multiplier. The final product is available in A and Q, with A
holding the most significant bits and Q the least ~ i g ~ c a n t bits of the product.

The previous numerical example is repeated in Table 8.5 to clarify the multiplication process.
The procedure follows the steps outlined in the ASMD chart, The data shown in the table can
be compared with simulation results,

The type of registers needed for the data processor subsystem can be derived from the
register operations listed in the ASMD chart. Register A is a shift register with parallel load to
accept the sum from the adder and must have a synchronous clear capability to reset the reg-
ister to 0. Register Q is a shift register. The counter P is a binary down counter with a facility

Table 8.5
Numerical Example For Blnaty Mulclplkr

Multiplicand B = 101 11 = 1 TH = 2310 Multiplier Q = 1001 1 = 1 3 ~ = 1910

Multiplier in Q
Qo = h a d d B
First partial product
Shift right CAQ
Q0 = 1; add B
Second partial product
Shift right CAP
Qo = Q shift right CAQ
Qo = 0; shift right CAQ
Qo = 1; add B
Fifth p m a l prcduct
Shifi right CAP
Final product in AQ = 01 101 101012 = lb5H

376 Chapter 8 Design at the Register Trarrrficr -1

t o p a r a l l e l l d a b i n a r y c o n s m t . T 2 l e C ~ Q o a ~ t b ~ r a ~ t b e h p u r ~
and have a synchron~us clear. Registers B ad Q need a padel Ioad cqddity in d e r to re-
oeive the multiplicaud and multiplier prior to &e start of tbe multiplidm -

8.8 CONTROL LOGIC
The &sign of a digital system can be divided into two parts: the degign of the regher ~rans-
fers in the datapath unit and the design of the wnwl logic of tk 001lml unit. l b e c~wttnl
logic is a finite state machine; its Mealy- and M m t p outputs control tk @0~18 ofthe
data@ The inputs to the control unit are the primary (external) inputs and tbe i u d sta
tns signals fed back from thedatapshto checoadler. TkThegnoftbegysttmcanbesyn-
c H e s i z e d h m B T 1 , ~ m d e r i v e d f r o m t h e A S M D c h a t t . ~ v ~ , a ~ d e s i g n
must derive the logic governing the inputs to the flipflops holding the state of the ammller.
Tbe idomation needed to form the state diagram of the cmtmk b m m i d in the
A S M D c h a r t , s ~ t h e ~ b ~ d a a t ~ ~ ~ b o x e s a r * t b e ~ o f t h e ~ -
tial circuit. The diamond^ blmh tW designate decision boxas &mk the logical am-
d i t i w s f b r t h e n e x t s t a t e ~ i n t b e ~ d h g m m

As an example, the control statedbgmmforthebinary~pIierdevelqd hthprwi-
ous section is shown in Fig. 8. lqa). The Information for the diagram is Eaken directly from the

StateTdfion

Prom 32

s m
S-idle S4dd
&add s A @

SdkiP

w*-

InilMstatc
A<=O,C<=O,P<=dp~vidak
P < = P - 1
if(Q[OJ)tben(A<=A + B , C < = C a

shiftright {CAP], Cc=O

@I
WUIB 8.16
C - l s p e a Z R c a t i o n r f W b l n q ~

SectJon 8.1 Control logic 377

ASMD chart of Fig. 8.15. The three states S-idle through S-skj? are taken h m the rectangu-
lar state boxes. The inputs Start and Zero are taken from the diamond-shaped decision taxes.
The register transfer operations for each of the three states are listed in Fig. 8. lqb) and are taken
h m the corresponding state and conditional boxes in the ASMD chart. Establishing the stag
transitions is the initial fwus, so the outputs of the controller are not shown.

There are two distinct aspects with which we have to deal when implementing the control
logic: Establish the required sequence of states md provide signals ta control the register op-
d o n s . The sequence of states is specifled in the ASMD chart or the state diagram. The sig-
nals for controlling the operations in the registers are specified in the register transfer statements
annotated on the ASMD chart or listed in tabular format. For the multiplier, these signals are
Load-regs (for parallel loading the registers in the datapath unit), DecrJ (for decrementing
the counter), Add-regs (for adding the multiplicand and the partial product), and Shift-regs
(for shifting register CAQ) , The block diagram of the control unit is shown in Fig. 8.14(b).
The inputs to the controller are Start, Q[], and Zero, and the outputs are Ready, Load-regs,
Decr-P, AdLregs, and Shift-regs, as specified in the ASMD chart. We note that Q[0] affects
only the output of the controller, not its state transitions. The machine transitions from S-add
to S-sh~? unconditionally,

An hprtant step in tbe design is the assignment of coded binary values to the states. The sim-
plest assignment is the sequence of binary numbers, as shown in Table 86. A similar assignment
is the Gray code, according to which only one bit changes when going born one number to the
next. A state assignment often used in conmI &sign is the ow-hot assignment. This assignment
uses as many bits as there are states in the circuit, At any given time, d y one bit is equal to 1
(the one that is hot) while alI others are kept at 0 (all cold). This type of assignment uses a flip-
flop for each state. Indeed, one-hot encoding uses more flipflops than other types of coding, but
it usually leads to simpler decoding logic for the next state and the output of the machine. Because
the decding logic does not become more complex as states are added to the machine, the s p d
at which the machine can operate is not limited by the time required to deccde the state,

Since the controller is a sequential circuit, it can be designed manually by the sequential logic
procedure outlined in Chapter 5. However, in most cases this method is difficult to carry out
manually because of the large number of states and inputs that a typical control circuit may have.
kP a consequence, it is necessary to use specialized methods for control logic design that may
be considered as variations of the classical sequential logic method. We will now present two
such design prwedures. One uses a sequence register and decoder, and the other uses one flip-
flop per state, The method will be presented for a small circuit, but it applies to larger circuits
as well. Of course, the need for these methods is eliminated if one has software that automat-
ically synthesizes the circuit from an HDL description.

Table 8.6
State Assignment fur Control

State Blnaty Gray Code One-Hot

378 Chapter 8 Design at the Rcgirber Transf# Level

The sequence-register-and- (manual) method, as the name implies, uses a register for
themntrols~ksandadecoderto~an~toorrespoadingm~hoftbestates.~
decoder is not needed if a one-hot c d e is used) A register with n flip-flops can hvc up to 2"
states, and an n--2'-line decoda has up to 2n outpts, An n-bit qwace regism is esseatially
a circuit with n fipflops, together with the h a t e d gaw that effect their stabe trmsitim.
The ASMD chart and the state diagram fur lhe controller ofthe binary multiplier have three

states and two inputs. mere ia no need to cmhkx QCOJ.) To implement dx M~gn with a sc
quence register and deooder, we need two Epflups for the register and a ~~+t&our-line de-
coder. The outputs of the decoder will form the Moore-type outputs of the cwmller w y .
The Mealy-type outputs will be formed from the Mwre ou@m& and the inpats.

The state table for the finite state machine of the conmk i shown in 'IBbt 8.7. It is &
rived dircctly from the ASMD chart of Fig, 8.150 or the state diagram of Fig. 8.1qa). We des-
ignate the two flipflops as GI and & and assign the binary statedi 00,01, and 10 to Sjdle ,
S H , and S ~ h i , respectively. Note that the inpllt cdumns have don't-care entrim wbenev-
er the input variable is not used to determine the next state 'We outputs of the -1 circuit
are designated by the names given in the ASMD chm. The pamcular M-type output vari-
able that L squal to f at any given time is demnhed fmm the equivalent binary value of the
pment state. Those o u i p variables are sbadcd in Table 8.7. Thus, when the p m m state is
GIGo = 00, output Ready must be equal to 1, while the other o q m s remain at 0. S i the
Moore-type outputs are a function of only the present sW, they tau be generated with a de-
OOaer~thavingthetwoinput~G~ d~andusingthreeofthedeooderwtputs T,thraugh
T2, as shown in Fig. 8.17(a), which does not include the wiriog for the serate fdhack.

The state machine of the confrolkr can be designed h m rhe state table by means ofthe c h -
sical procedure presented in Chapter 5. Tbis example ha$ a small n u m h of stam and jnputs,
so we could use maps to simplify the Boolean Wens. In most control logic applicatiolls, the

Present Mext
State 1- m

Present-State
1 3 : , t)

symbol cl Gp - wol G Go ha$#
S-idle 0 0 0 X X 0 0 0 0 0 0
s-idh 0 0 1 X X 0 1 1 0 0 0
S# 0 1 x o x 1 0 " O F 0 0
S# 0 1 X 1 X 1 0 0 0
S3h$ 1 0 x x 0 0 6
SAift 1 0 X X 1 0 0 0 0 0 0

QPI

Zero

clock
resetb

S d o n 8,8 Cwtrol Logic 379

Next Sme Logic

clock

FIGURE 8.17
f q i c diagram of control for binary multiplier uslng a sequence reglrter md decQdat

Chrrptw 8 Deslgn at the Reglster Transfer Level

number of stam and inputs is much ma. In general, the application of the classical methad
an excemive amount of w d to obtain the s h p l M e d Input equations for the flipflops

d i s p i o n e t o ~ , T h e d e s i p ~ b e s i m p ~ i f w e ~ ~ ~ ~ m t h F f ~ t t h a t
the decoder outputs me available for use in the design. Inatead of using flipflop outputs as the
present-state conditions, we use the miputs 4th h c d r to nhepmm-m cORdi-
tion of the sequential c i d . Mimmve% hatead of using maps to h p t i f y die flipflap up-
tiom, we can obtain them - by impction of the s- table. For example, from tbe
~ t - ~ d t i ~ 1 1 9 i n h ~ ~ ~ e W t b a t t b e n e x t ~ o f C ; I i s ~ t o 1 w k n t h e
preseatsmi9S~disequal~Owbentl3e~~~S-~orS~niff.~~an-

where is the D input of flipflop GI. ShniMy, the D input of Go k

& = To Start + T2 Zero'

When deriving input equations by inspection from the s w table, we cannot be aiure that the
Boolean functions have been s i m p E d in th best pabb way. (S y n b k tmls & care of
this dstail autwaatically.) In gamd, it is advisable to analyze the circuit to ensurc that the
equations derived do indeed p r o h e the reqPired state transitim.
The logic diagram of the d cimtit is dram in Fi. 8.17@). It cow&& of a re* with

two fipfIops GI and Go and a 2 X 4 decodek 'Ihe ouputs of tbe dtcoda are used to gencr-
ate the input^ to the next-state logic as well as the conml o i q u ~ . The outpub of the aonmller
should be connected to the datapath to sctivate the r a q M re- opdons.

Qndbt Ddgm (One fllp-Flop per State)

Artother method of control logic design is thc one-hot assignment, which in a qum-
tial circuit with one flipflop per Only one oftbe flipflaps wdns a 1 at aoy time, dl
othtrsareresettoO.T&e~lel~~one~Oopmm~updertbe~~~ltrolof
decision logic. In such a conQndon, each flipflap a &a& that is omly
when the control bit is st to it.

This method uses the maximum number d £lipflap for the v t i a l M t . For exrun-
pie, a s q m t i a l circuit with 12 requhs a minimnm dfour flipflw By canea9t, witb
themetbodofmef l ipf lop~state , ihec ircui t~ 1 2 f l i p f l ~ o n e f o r e a c h ~ . A t
f i r s t g t r m c e , i t m a y s e e m ~ t b i s ~ ~ d ~ ~ c o s t , ~ m o r e ~ a o P g m
u s o d . B u t t h e m e t h o d o ~ s w r t e ~ ~ m a y ~ g ~ t k ~ O f P e s d v a n t a g e i s ~
simplicity witb whichthe logic crrnbedtsigdby bpction oftk ASMDchart orthe state
d i a g t a m . N o s t a t e m e x c l ~ ~ ~ ~ ~ i f D - t y p c ~ p f l ~ a ~ e e m p 1 ~ T h e ~
h o t m e t b o d o f f e r s a s a v i n g s i n ~ ~ r m ~ i n ~ d ~ W t y , a t s d a p o s -
sibledecreascin thetotdwmberof gatw,sinceadedu ism needed

' Z l a e d & g n ~ w i l l b e ~ b y o b t a i a i n g t b e ~ ~ ~ b y t k s t a o :
diagram of Fig. 8. Iqa). Since k r e are three staka in tbe stats dhgram, we cboase fhnx D flip-
flops and label their outputs Go, GI, a d Gz, mmpudhg to S k k , S d , and Sqh@, -
tidy, The input equations for r d n g each flipxlop to 1 a determined from tk pnsent stape and

the input amdikions along the corraspondin% diwtd lines going hto the SWL RK exampIe, Dm,
dteinput~ftipflopGo,isset~1ifthemachineisins~~aadStartisnotasserted,wifthe
m c h k is in state Gz a d a m is asserted. Thae conditions are s p d f d by the input equatim:

hO = GO Start' + G2 Zero

In fact, the condition for seaing a flip-flop to 1 is obtained directly from the state diagram,
horn the condition specified in the directed lines going into the corresponding flip-flop state
ANDed with the previous flipflop state.. K h is more than one direct4 line going iuto a state,
ali conditions must be ORed. Using this prodm for the other three flipflops, we obtain the
remaining input equations:

DGl = GO Start + Gz Zero'

Dm = GI

The logic diagram ofthe -hot controller (with one flipflop per stak) is shown in fig. 8.18.
The circuit msists of three D flip-flops labeled through G2, together wiah the associated gates

QPJ

Zem

clock

FIGURE a18
Logk diagram for one-hot state eonhotbr

U Chapter 8 Drdgn at the Register Tramhw Lnnl

specified by the input equations. Initially, flipflop must be set to 1 and all flipflops
must be reset to 0, so that the flip-flop representing the initial state is d i e d . This can lx durn
by using an asynchronous preset on flipfbp and an asynchrunous clear for the oher £lip
flops. Once started, the controller with one flipflop ~r state wil l propagate from one state to
the otber in the proper manner. Only one flipflop will be set lo 1 with each clock edge: all
othm are reset to 0, because thek D inputs are equal to 0.

8.9 HDL DESCRIPTION OF B I N A R Y MULTIPLIER

A second example of an HDL description of an RTL design is given in HDL Example 8.5. The
example is of the binary multiplier designed in Section 8.7. For simplicity, the entire descrip-
tion is ''flattened" and encapsulated in one module, Comments will identify the controller and
the datapath. The first part of the description dec1m.a all of ofthe inputs and ouputs as specrfied
in the blwk diagram of Fig. 8.1qa). The macbine will be for a five-bit &tapah
to enable a comparison bemm its simulation data and the result of the multiplication with the
numerical example listed in Table 8.5. The same model can be wed for a datapath having a
Merent size merely by changing the value of the parameters. The -nd part of the &scrip
tion declares dl registers in the controller and the datapath, as well as the we-hot encdhg of
the states. The third part specifies implicit combinational logic {continuous assignment me-
ments) for the concatenated register CAQ, the Zero status signal, and tlx Ready output signal.
The continuous assignments for &ro and Ready are accomplished by assigning a Boolean ex-
pression to their wire declarations. The next section describes the conml unit, using a single
edge-sensitive cyclic behavior to &acribe the state transitions, and a level-sensitive cyclic be-
havior to describe the combinational logic for the next state and the outputs. Again, note that
default assignments are made to rutstate, Load-regs, DecrJ, Add-mgs, and Skift-mgs.
The subsequent logic of the case statement assigns their value by exception. The state transi-
tions and the output logic are written directly b r n tlw. ASMD chart of Fig. 8.1 S(b).

The datapath unit descrihs the register operations within a separate edgesensitive cyclic
behavior. (For clarity, separate cyclic behaviors are used; we do not mix the description of the
datapath with the description of the controller.) Each control input is decoded and is used to
specify the associated operations. The addition and subtraction operations will be implement-
ed in hardware by combinational logic. Signal L m d s g s causes the counter and the Mher reg-
isters to be loaded with their initial values, etc. Because the cwaoller and datapath have been
partitioned into separate units, the control signals completely specify the behavior of the data-
path, explicit information about the state of the controller is not needed and is not made avail-
able to the datapath unit.

The next-state logic of the controller includes a &fault case item to direct a synthesis tool
to map any of the unused codes to S a l e . The default case irem and the default assignments
preceding the case statement ensure that the machine will recover if it somehow enters an un-
used state. They also prevent unintentional synthesis of latches. @membeb a synthesis tool
will synthesize latches when what was intended to be combinational logic in fact fails to com-
pletely specify the input-output function of the logic.)

S ectlon 8.9 HDL Description of Binary MuttFpller

-la Sequ~~-B~-Mu lUp I l e r (Product, Ready, Multlplleand, Multiplier, Start,
w M - b) :
I1 Mauk eonfigurntion: fiwlt datapath
prnmrtsr dp-width = 5; 11 Set to wldth of dabpath
output [2*dp_wldth -1 : 01 Product;
output Ready;
lnput [dp-wldth -1: Oj Multipllcend, MulUplier;
Input Start, do&, me-b;

BC-size = 3; /I Size of bit wuntw
S-Idle = 3WO1, I1 one-hd code
S-add = 3'Mf 0,
S-uhlff = 3'bI 00;
state, next-state;

A, 8, a; I/ Shed for dabpath
c;
p;
Load-regs, Dm-P, Add-regs, 8hRmgs;

asslgn Product = (A, Q);
wlm a m = (P = 0); I/ taunter is zero

11 Zero = -IF; /I amative
w l n Ready = (state == S-idle); /I controller status

11 control unit
rlwaya @ t~oswlge dock, negedw reset-b)

W (-rwet-b) state c= S-Idle; el- &ate s= next-atate;

rlwmya Q (state, Start, Qp], Zero) h g l n
next-state = S-ldb;
Load-mgS= 0;
Ober-P = 0;
Add_- = 0;
ShHtHtmgB = 0;
w e (st&te)

S-Idle: begln If (Start) next-state = 8-add; Lmd-regs = 1 ; end
S-add: k g l n nestate = S-shift Dew-P = I; If (QIOI) Ack-regs = 1; mnd
S-$hi win Shift-regs = 1 ; if (Zm) ne~state = S-Idle;

else nextstate = S-add; and
d h u k next-state m $-idle;

Chapter 8 Design at the Il'eglster Transfer Level

endcase
end

I/ data path unit
always @ (poredgm clock) begln
H (Load-regs) begin
P c= dp-Am;
A c= 0;
C c= 0;

B <= Mukplknd:
Q r= Multiplier:

end
H (Add-reg81 {C, A) 4- A * 8;
If (Shif-regs) {C, A, Q} - (C, A, Q} ** d;

P (Decr-P) P <= P -1:
end

endmoduk

Testing tha Muhiplief
HDL Example 8.6 shows a test h c h for testing the multiplier. The inputs and wqruts are
the 8ame as those shown in the block diagram of Fig. 8.1 *a). It is naive to conclude that
an HDL description of a system is correct on the h i s of the output it gemrates under the
application of a few input signals. A more ettaagic aQproach to testing and v d c a t i o n
exploits the partition of the design into its datapath and control unit. This partition supports
separate verification of the controller aad the da&apth. A separate test bench can be devel-
oped to verify that the datapa& executes each m t i m and generates status signals cor-
rectly. After the datapath unit is verified, the next step is to verify tha! each conml signal
is formed correctly by the control unit. A sqwak test bench can verify hat the u m t d unit
exhibits the complete functionality specified by the ASMD chart (i.e., that it makes the cor-
rect state transitions and asserts its outputs in response to the e x m a 1 input$ and the stams
signals).

A verified control unit and a v&ed datapath unit together do aot guarantee lbat tbe sys-
temwill~e~y.'IAefiPal~inthedGgign~htohtepthe~mod-
els within a parent module and verify the funceiomlity of the overall machine. TEc ipbrface
h m n the controtler and the datapath must be examined in order to verify that the ports
are connected correctly. For example, rr h m m h in the liskd order of signah may not be

by the compiler. After (he data@ unit and the cmm1 unit have k e n d e d , a
third test bench should verify the sp5fwd functionality ofthe complctt system. In mce,
this requires writing a comprehmsive test plan iden- that functionality. For example,
the test plan would identify the need to verify that the sequential multiplier asserts the sig-
nal Rgady in state S-idle. The exmk to write a test plan is nac academic: The quality and
~ d t h e t e s t p l m & ~ t t h e w o r t b o f t b e ~ ~ & o r c . T h e ~ p h ~ d e s e b e
development of the test bbnch and in- the likelihood that the fina design wil l match
its specification.

Section 8.9 HDL Description of Binary Multlpller 385

Testing and verifying an HDL model usually requires access to more information than the
inputs and outputs of the machine. Knowledge of the state of the control unit, the control sig-
nals, the status signals, and the internal registers of the datapath might all be necessary for
debugging. Forhmately, Verilog pmvides a mechanism to hierarchically de-reference identifiers
so that any variable at any level of the design hierarchy can be visible to the test bench.
Procedural statements can disphy the information required to support efforts to debug the
machine. Simulators use this mechanism to display waveforms of any variable in the design
hierarchy. To use the mechanism, we reference the variable by its hierarchid path name, For
example, the register P within the datapath unit is not m output port of the multiplier, but it can
lx referenced as M0.P. The hierarchical path name consists of the sequence of module identi-
fiers or block names, separated by periods and specZyhg the location of the variable in the
design hierarchy. We also note that simulators commonly have a graphical user interface that
displays all levels of the hierarchy of a design.
The first test bench in HDL Example 8.6 uses the system task $strobe to display the re-

sult of the computations. This task is similar to the $display and $monitor tasks explained
in Section 4.12. The $strobe system task provides a synchronization mechanism to ensure
that data are displayed only after all assignments in a given time step are executed, This
is very useful in synchronous sequential circuits, where the time step begins at a clock
edge and multiple assignments may occur at the same time step of simulation, When the
system is synchronized to the positive edge of the clock, using $strobe after the always
@ (posedge clock) statement ensures that the display shows values of the signal after the
clock pulse.

The test bench module t-Sequntial~inary_Multlplier in HDL Example 8.6 instantiates
the module Sequential BinuryryMultiplier of HDL Example 8.5. Both modules must be included
as source fdes when simulating the multiplier with a Verilog HDL simulator. The result of this
simulation displays a simulation log with numbers identical to the ones in Table 8.5. The code
includes a second test bench to exhaustively multiply fivt-bit values of the multiplicand and
the multiplier. Waveforms for a sample of simulation results are shown in Fig. 8.19. The nu-
merical values of MuEtipkicand, Multiplier, and Product are displayed in decimal and hexa-
decimal formats. Insight can be gained by studying the displayed waveforms of the conml
state, the control signals, the status signals, and the register operations. Enhancements to the
multiplier md its test bench are considered in the problems at the end of this chapter. In this
example, 1910 X 2310 = 43T10, and 17H + ObH = 0ZH with C = 1. Note the need for the
carry bit.

HDL Example 8.6

11 Test bench for the binary multiplier
module t-Sequential-Binary-Multiplier; - .<.
parameter dp-width = 5; I! Set lo width of datapath
wl re [2*dp_width -1 : O] Product; 11 0- from multiplier
wlre Ready;
re Il [dp-wldth -1: 01 Multiplicand, Multiplier; I/ Inputs to multiplier
reg Start, clock, re#-b;

386 Chapter 8 Peslgn at the Register Tra- L e d

RtLlRL 8.19
Slmulatlon waMforms for mw-ht

Man 8 9 HDL Descrlptlon of Binary Multipll& 387

I / Instantiate rnultlpller
Squential-Binary-Mult[plier MO (Product, Ready, Multiplicand, Multiplier, Start, clock,

reset-b);
/ I Generate stimulus waveforms
lnitlal#200 $flnlsh;
Initial
begin
Start = 0;
reset-b = 0;
#2 Start = I; reset-b = 1;
Muttlplicand = 5'blOIl l; Multlpller = 5'bI 001 1;
I 0 Start = 0;

end
lnltlal
begln
dock = 0;
repeat (28) #5 clock = -clock;

end
// Display results and compare with Table 8.5
always @ (poaedga clock)
$strobe ("C=%b A=%b Q=%b P=%b time=%Od",MO.C,MO.A,MO,Q,MO.P, $time);

endmodule

Sirnulatlon log:
C-0 A=OOOOO Q=t 001 1 P-I 01 time=5
C=O A=lOl l l Q=10011 P-100 time=15
C=O A=OlOl I Q=11001 P-100 tlme=25
C=1 A=OOOlO Q=11001 P=011 time=35
C=O A=l0001 Q=01100 P=O1 S time=45
C=O A=lOOOl Q=01100 P=010 time=%
C=O A=OlOOO Q=10110 P=OlO tlme=85
C=O A=01000 Q=10110 P=001 time=75

C=O A=00100 Q=01011 P=001 time=85
C=O A=l I01 1 Q=01011 P=000 tlme=Q5
C=O A=01101 Q=10101 P=OOO tlme=105
C=O A=01101 Q=10101 P=000 time=115
C=O A=01101 Q=10101 P=000 time=125
r Test bench for exhaustive simulation
module t-Sequsntlal_8inary_Mu~plier;
parameter dp-wldtt~ = 5;
wlm [2 * dp-wldth -1: 0] Product;
wire Ready;
WI [dp-width -1 : 01 Multiplicand, Multiplier;
reg Start, clock, reset-b;

It Width of datapath

388 Chapter 8 Design at the mI-r T- -1

Sequential-Binary-Multiplier MO (Product, Ready, Multiplbnd, Multip)i, Start,
c l d , reset-b);

lnstlal #I030000 $finish;
Inltlal begln dock = 0; #5 forever #5 dock = -dock; end
initlal fork
reset-b = 1 ;
#a reset-b = 0;
#3 reset-b = 1 ;

join
lnltial begin #5 Start = 1; end
Inltid begin
#5 Multiplicand = 0;
Multiplier = 0;
repeat (32) #I 0 begln Multiplier = Multiplier + 1 ;
repeat (32) @ (posedge MO.Ready) 5 Multiplicand = Multiplicand + 1 ;

end
end

endmodule
*I

Structural modeling implicitly specities the functionality of a digital machine by W h g
an interconnection of gate-level M w m units. In this form of modeling, a s y n t k h tool per-
forms Boolean optimization and translates the HDL description of a circuit into a netlist of
gates in a particular technology, e.g., CMOS. Hardware design at this level oftea recpim clev-
erness and accrued experience. It is the most tedious and detaiIed form of mdeling. In con-
mt, behavioral RTL maleling specifies functionality abstractly, in in of HDL m o m .
The RTL model does not specify a gatelevel impIementation of h e registers or the logic to con-
ml the operations that manipulate their contents-those task3 are accomplished by a pynthe-
sis tool. RTL modeling implicitly schedules operations by explicitly as- them to clock
cycles. The most abstract fom of b e b i d modeliug M b e s only an ~~ w&mt any
reference to a physical implementation, a set of resources, or a schedule for tkir use. Thus,
algorithmic mdeling allows a designer to explore trade-offs in the space (bardware) and time
domaim, mading processing speed for bardware complexity.

HDL Example 8.7 presents an RIL nmdel and an algdknic model of a binary multiplier.
Both use a level-sensitive cyclic behavior. Ih RTL model expresses ?he f u n c t i d t y of a
multiplier in a single statement. A s y n t b i s tool will m i a t e with tbe muhiplicatiw aperator
a gatelevel circuit equivalent to that shown in Section 4.7. In S i m W w , when either the mul-
tiplier or the multiplicaud changes, the product will be updatd The time requited to form the
@uct will W n d w the delays of h e gates available in the libmy of s tdad
ceb used by h e synthds twl. The secmdmodel is an algodthmic descripeiw o f h mubjplier.
A synthesis tool will unroU the loop d the algorithm and infer the need for a *level circuit
equivalent to that shown in Section 4.7.

Section 8.9 HDL Description af Binary Multiplier 389

Be aware that a synthesis tool may not be able to synthesize a given algorithmic descrip-
tion, even though the associated HDL model will simulate and produce correct results. One
difficulty is that the sequence of operations implied by an algorithm might not EK physically
realizable in a single clock cycle. It then becomes necessary to distribute the operations over
multiple clock cycles. A tool for synthesizing RTL logic will not be able to automatically
accomplish the required distribution of effort, but a tool that is designed to synthesize algo-
rithms should be successful, In effect, a behavioral synthesis tool would have to allocate the
registers and adders to implement multiplication. If only a single adder is to be shared by all
of the operations that form a partial sum, the activity must be distributed over multiple dock
cycles and in the correct sequence, ultimately leading to the sequential binary multiplier for
which we have explicitly desiped the cohtroller for its datapath. Behavioral synthesis tools
require a different and more sophisticated style of modeling and are nm within the scope of
this text.

HDL Example 8.7

11 Behavioral (RTL) descdption of a parallel multiplier (n = 8)
module Mult (Product, Multiplicand, Multiplier);

input 17: 01 Multiplicand, Multiplier;
output reg [15: 0] Product;
always @ (Multlpllcand, Multiplier)

Product = Multlpllcand Mutlplier;
endmodule
module Algorithmic-Binary-Multiplier #(parameter dp-width 5) (

output [2*dp_width -1 : O] Product, Input [dp-width -1 : 01 Multlpllcand, Multiplier);
mg [dp-wldth -4: 01 A, 61 Q; / I Sized for datapath
refa C;
Integer k;
aaslgn Product = {C, A, Q};
always @ (Multiplier, Multlplicard) begin

Q = Multiplier;
B = Multiplicand;
C=O;
A = 0 ;
for(k= 0; k <=dp-width-I; k = k + 1) begin
H(Q[O]) {C, A) = A + B;
{C, A, Q) = {C, A, Q} >> 1;

end
end

endmodula
module t-Algorithmic-Binary-MuI~pIier;
parameter dp-width = 5; 11 Width of data path
wlm [2* dp-width -1: 01 Product;
nrg [dp-wldth -1: 01 Multiplicand, Multiplier;
integer Exp-Value;

W Emr;
A@orithmlc-Binary-Multiplier MO (Product, Multiplicand, Multiplier);

it Error detection
initial# 1030000 finish:
always @ (Product) begin

Exp-Value = Multiplier * Multiplicand;
I1 Exp-Value = Multiplier * Multiplicand +1; I / Inject error to confirm det-n
Error = Exp-Value A Product;

end
It Generate multiplier and multiplicand exhaustively for 5 bi operands

inltlal begln
#5 Multiplicand = 0;
Multlpller = 0;
repeat (32) #I 0 begin Multiplier = Multiplter + 1 ;

repeat (32) #5 Multiplicand = Multiplicand + 1 :
end

end
endmodule

8.10 DESIGN WITH MULTIPLEXERS

The s e q u e n c e - r e g i s t e r - a n d scheme for the design of a controller has three parts: tk flip-
flops that hold the binary state value, the decoder that generates the conml outputs, and tbe gates
that determine the next-state and output signals. In Section 4.1 I, it was shown that a combi-
national circuit can be implemented with multiplexers instead of individd gates. Replacing
the gates with multiplexers results in a regular pattern of three levels of components. Tbe first
level consists of multiplexers that determine the next state of the register. The second level
contains a register that holds the present binary state. The third level has a decoder that asserts
a unique output line for each control state. These thee components are predefmd staadard cells
in many integrated circuits.

Consider, for example, the ASM chart of Fig. 8.20, consisting of four states and four con-
trol inputs. We are interested in only the control signals governing the state sequence. Tbese
signals are independent of the register operations of the datapath, so the edges of the graph are
not annotated with datapath register oprations, and the graph does not identify the output sig-
nals of the controller. The binary assignment for tach state is i n d i a at the upper right comer
of the state boxes. The decision boxes specify the state transitions as a function of the four
control inputs: w, x, y, and z. The three-level conml implementation, shown in Fig. 8.21, con-
sists of two multiplexers, MUX 1 and MUX2; a register with two flipflops, GI and Go; and a
decoder with four outputs-do, dl, d2, and d3, corresponding to S-0, S-I, S-2, and S-3, re-
spectively. The outputs of the state-register flipflops are applied to the decoder inputs and also
to the select inputs of the rnultip1exers. In this way, the present state of the register is used to
select one of the inputs from each multiplexer. Tbe outputs of the multiplexers are then applied
to the D inputs of GI and Go. The purpose of each multiplexer is to produce an input to its cor-
respndiag flip-flop equal to the binary value of that bit of tbe next-state vector. The inputs of

Section 8.1 0 Design wlth Multiplexers

FIGURE 8.20
Example of ASM chart wlth four control inputs

the multiplexers are determined from the decision boxes and state inmihns given in the ASM
chart. For example, state 00 stays at 00 or goes to 01, d e p d h g on fb value of input w. Since
the next state of GI is 0 in either case, we p h a signal equivalmt to logrc 0 ih MLTXl input
O.ThenextstateofGoisOifw = O a n d l i f w = l .S~thenextscateof~ isqurr l tow,
we apply control input w to MUX2 input 0. This means b t when the select inputs of the md-
tipltxers are equal to present state 00, the outputs of the multiplexen provide the binary value
that is transferred to the register at the next clock pulse.

To facilitate the evaluation of the multiplexer inputs, we a table slmwing the input
conditions for each possible state transition in the ASM chart. Table 8.8 gives this W o n
for the ASM cbaa of Fig. 8.20. There are hva transitions h m p m a t state 00 or 01 and b e e
from present state 10 or 11. The sets of transitions are qm&d by bhntal k arxloss the
table The input conditions listed in the table are obtained from &e decision boxes in lk ASM
chart.Forexample,hmFig.8.20,wenote~~s~01willgotone~state10ifx = 1
or to next state 11 if x = 0. In h e table, we n d c t h e input codtiom as x and x', m v e l y .
The two columns under "multiplexer input$' in the table s@fy the input valses that must be
applied to MUXl and MUX2. The muhiplaex input for each pmmt state is detemkd h r n
the input conditions when the next state of the fiipflop is qd to 1. nus, dter present state
01, thenext stateof GI is alwaysequalto 1 andthenextstakofGoisqd totkamplement
ofx.Therefure, theinputofMUX1 ismadeequalto 1 dthatofMUX2tox1 when tbepres-
e n t s c a t e o f t b e r e @ ~ i s O l . h ~ ~ l e , I l f t e r ~ ~ lO, thenext~dC;1rnust
be equal to 1 if the input mditi01~s are yz' or yz Wben these two Bmlm barns are ORed to-
gether and h n simpEd, we obtain the single biaary variable y, as d h t e d m the table. The
nextstateof~isequalto1 i f l h i n p u t ~ m a r e y z = ll.Ifthenexts&ateofC;IrtmainS
at 0 after a given present we place a 0 in the muhiplexer h p t , as shown in present state
OOforMUX1.If~next~ofGlisalways 1, weplacea l i n t h e m u l ~ i q u t , a s s h o w n
in present state 01 for MUXI. The other mtck for MUXl a d MUX2 are derived in a similar

S d o n &I0 Deslgn with Muttiplexers 393

Table 8.8
Muftrplexer Input Conditions

Present Next Input
State State Conditlon Inputs

61 Go GI Go s M U X l MUX2

0 0 0 0 w'
0 0 0 1 W 0 W

0 1 1 0 x
0 1 1 1 x ' 1 x '
1 0 0 0 Y'
1 0 1 0 YZ'
1 0 1 1 Y Z yr' + yz = y YZ

1 1 0 1 Y'Z
1 1 1 0 Y
1 1 1 1 y'z' f y'z' = y i- z'

manner. The multiplexer inputs frum the table are then used in the control implementation of Fig.
8.21. Note that if the next state of a flip-flop is a function of two or more control variables, the
multiplexer may q u i r e one or more gates in its input. Otherwise, the multiplexer input is equal
to the wniml variable, the complement of the control variable, 0, or 1.

Design Example: Count the Number of Ones in a Register

We will demonstrare the multiplexer implementation of the logic for a contml unit by means
of a &sign example--a system that is to count the number of 1's in a word of data. The example
will also demonstrate the formulation of the ASMD chart and the implementation of the data-
path subsystem.
From among various alternatives, we will consider a ones counter consisting of two regis-

ters R l and R2, and a flip-flop E. (A more efficient implementation is considered in the prob-
lems at the end of the chapter.) The system counts the number of 1's in the number loaded into
register RI and sets register R2 to that number. For example, if the binary number loaded into
Rl is 101 11001, the circuit counts the five 1's in RI and sets register R2 to the binary count 101.
This is done by shifting each bit from register R l one at a time into flip-flop E. The value in E
is checked by the control, and each time it is equal to 1, register R2 is incremented by 1.

The block diagram of the datapath and controller are shown in Fig. 8.22(a). The datapath
contains registers R l , R2, and E, as well as logic to shift the leftmast bit of Rl into E. The unit
also contains logic (a NOR gate to detect whether RI is 0, but that detail is omitted in the
figure). The external input signal Start launch the @on of tbe A, Ready indicates
the status of the machine to the external environment l k controI1er has status input signals
E and Zero from the datapath. These signals indicate the wnkmts of a register holding the
MSB of the data word and the condition that the data word is 0, respdvely. E is the output
of the flip-flop. Zero is the output of a circuit that checks the contents of register R l for d l 0's.
The circuit produces an output Zero = 1 when Rl is equal to 0 (i.e., when R1 is empty of 1 's).

394 Chapter 8 Design at the Register Transfer Lewl

clock

count

@I
RtURE 8.22
Block dlagram and ASMD chart for muntof4ner dblt

A preliminary ASMD chart showing the state sequence and the register operations is il-
lustrated in Fig. 8.22(b), and the complete ASMD chart in Fig. 8.22(c). Asserting Start with
the controller in S-idle transfers the state to S-I, concurrently loads register R l with the bi-
nary data word, and a s the cells of R2 with 1's. Note that incrementing a number with all
1's in a counter register produces a number with all O's, Thus, the first @ansition from 3-1 to
S 2 will clear R2. Subsequent transitions will have R 2 holding a count of the bits of data that
have been processed. The content of R1, as indicated by Zem, will also be examined in S-1.
If R1 is empty, Zero = 1, and the state returns to $-idle, where it asserts Ready. In state SJ,
Incr-R2 is asserted to cause the datapath unit to increment R2 at each clock pulse. If RI is not
empty of l's, then Zero = 0, indicating that there are some 1's stored in the register. The
number in R1 is shifted and its leftmost bit is transferred into E. This is done as many times
as necessary, until a 1 is transferred into E , For every 1 detected in E, register R2 is incremented
and register R l is checked again for more 1's. The major loop is repeated until dl the 1's in
R l are counted. Note that the state box of S-3 has no register operations, but the block asso-
ciated with it contains the decision box for E. Note also that the serial input to shift register
R l must be equal to 0 because we don't want to shift external 1's into R1. The register RI in
Fig. 8.22(a) is a shift register. Register R2 is a counter with parallel load. The multipIexer
input conditions for the control are determined from Table 8.9. The input conditions are
obtained from the ASMD chart for each possible binary state transition, The four states are
assigned binary values 00 through 11. The transition horn present state 00 depends on Start.
The transition from present state 0 1 depends on Zero, and the transition from present state 11
on E. Present state 10 goes to next state 11 unconditionally, The values under MUXl and
MUX2 in the table are determined from the Boolean input conditions for the next state of G1
md Go, respectively.

The control implementation of the design example is shown in Rg .8.23. This is a three-level
implementation, with the multiplexers in the first level. The inputs to the multiplexers are ob-
tained from Table 8.9. The Verilog description in HDL Example 8.8 instantiates structural mod-
els of the controller and the datapath, The listing of code includes the lower level modules

Table 8,9
Muttiplsxrr lnput Conditions for Design Example

Present Next Input Multl plexer
State State Condltlons Inputs

GI Go GI Go MUXl MUX2

0 0 0 0 Start'
0 0 0 1 Start 0 Start

0 1 0 0 a m
0 1 1 0 Zero' Zero' 0

1 0 1 1 None 1 I

1 1 1 0 E '
1 1 0 1 E E' E

0

Zero'

1

E'

WCURE 8.23
Control tmplemeMatlon for mmt-d-ones chruA

implementing their structures. Note that the datapath unit does not have a & signal to clear
the registers, but the models for the flip-flop, shift register, and counter have an active-low
reset. This illustrates the use of Verilog data type supply1 to hardwire aose ports to logic vslue
1 in their instantiation within D a ~ h - S l l P . Note dm that the bt bench uses hiemchid de-
referencing to access the state of the controller to make b debug and vdcation rash d r ,
without having to alter the module ports to provide access to the internal signals. Awther de-
tail to observe is that the serial input to the shift register is bardwired to 0. T k lower level
d l are described behaviorally for simplicity.

RDL Example 8.8

module Count-Ones-STR-STR (count, Ready, data, Start, dodr. met-b);
11 Mux - decoder implementation of control logic
//controller is structural
11 datapath Is structural

parameter Rl-size = 8, R2-size = 4;
output [R2-size -1 : 01 cwnt;
o*M

Sectlon 8.1 0 Design with Multiplexers 397

lnput [Rl-size -1 : 01
lnput
wire

data;
Start, dock, reset-b;
Load-regs, ShifLleft, Incr-R2, Zero, E;

Controller-STRMO (Ready, L o a d g s , Shift-left, IncrLR2, Start, E, Zero,
dock, reset-b);

Datapath-STR M I (count, E, Zero, data, Load-regs, Shift-left, Incr-R2,
clock);

endmodule

module Controller-STR (Ready, Load-regs, Shift-left, Incr-R2, Start, E, Zero, clock,
reset-b);
output Ready;
output Load-regs, Shift-left, Incr-R2;
Input Start;
Input E, Zero;
Input clock, reset-b;
~ U P P ~ Y O GND;
S U P P ~ Y ~ PWR;
parameter SO = 2'b00, S1 = 2'b01,S2 = 2'b10, S3 = 2'bI 1; / I Binary code
wlre Load-regs, Sh iff-left, Incr-R2;
wlre GO, GO-b, D-inQ, D-inl, GI, GI-b;
wlre Zero-b = -Zero;
wire E-b = -E;
wire [I: 01 select = {GI , GO};
wlre 10: 31 Decoder-out;
assign Ready = -Decoder-out[Oj;
assign Incr-R2 = -Decoder-out[l];
assign Shift-left = -Decoder-ou t[2];
and (Load-regs, Ready, Start);
mux-4x1-beh Mux-I (D-lnl, GND, Zero-b, PWR, E-b, select);
mux-4x1 -beh Mux-0 (D-in0, Start, GND, PWR, E, select);
D-ftl p-flop-AR-b M I (GI, GI-b, D-in1 , clock, reset-b);
D-fli p-flop-AR-b MO (GO, GO-b, D-inO, clock, reset-b);
decoder-2x4-df M2 (Decoder-out, GI, GO, GND);

endmodu le
.A .

module Data pat h-STR (count, E, Zero, data, Load-regs, Shii-I&, Incr-R2, dock);
parameter Rl-size = 8, R2-$&I = 4; . IIG..:,.

output [R2_size -1: 01 count; 1 .-
output E, Zero; . :
Input [Rl-size -1: 0] data;
Input Load-regs, Shi-left, Incr-R2, clock;

390 Chapter 8 , ~ l g n at the Reglsm Ttr- W

wire [Rl-size-l:O]
wlra
~ u P P W
s ~ P v b 1
asslgn Zero = (R1 == 0);
Shin-Reg M I
Counter M2
D-flip-flop-AR M3
and

endmodule

R1;
zero;
Gnd ;
pwr,
I1 Implidt combinational logic
(Rl , m, Gnd, Shi-leR Load-mgs, CWG Pm);
taw* Load-regs, Inw-R2, dads, Rvr);
(E, w l , clock, Pwr);
(wl , R1 [Rl-sLe -11, Shif-I@);

rnaduk Shif-Reg (RI, data, SI-0, Shii-M, Load--, do& me-b);
parameMr R ls l ze = 8;
output [Rl-sk-1:0] RA;
input (Rl-size -1 : 01 data;
input Sl-0, Shi-Left, M-m;
Input dock, me-b;
rPe [Rl-429 -1 : O] Rt:
a- @ (posedge dock, negedge m-t-b)
e (reset-b == 0) R1 = 0;
eke begln
If (Load-regs) R1 <= dab; else
if (Shift-lefl) R1 <= (R1 [Rl-aim -2: 01, SI-0); end

endmodule
module Counter (R2, Load--, Incr-R2, dock, reset-b);
parameter R2-$Ire = 4;
output [fU-size -1 : 01 R2;
Input Load-regs, Incr-R2;
Input clock, reset-b;
reg [R2-slze -1 : 01 R2;
always @ (posedge clock, n-ge reset-b)
If (resetb == 0) R2 c= 0;
else if (Load-regs) R2 <= (K-size (1 'bl});
else If (Incr-R2 == 1) R2 *= R2+ 1:

endmodule
module D-alp-flop-AR (Q, D, CLK, RST);
output a;
Input Dl CLK, RST;
w Q;
ahnays @ (m d w CUG - RST)
tF (RST == 0) Q <= IW;
etps Q <= D;

endmoduk

Sertl~n 8.1 0 Design with Multiplexers

module D-fllp-flop-AR-b (Q, Q-b, D, CLK, RST);
output Q, Q-b;
input D, CLK, RST;
reg Q;
asslgn Q-b = -Q;
always @ (posedge CLK, negedge RST)
if (RST == 0) Q <= I'bO;
else Q <= D;

endmodule
/ I Behavioral description of four-to-one line multiplexer
I/ Verilog 2005 port syntax
module mux-4x1-beh
(output reg m-out,
Input in-0, in-I, in-2, in-3,
input [1: 01 select

1;
always @ (In-0, In-I, In-2, in-3, select) I / Verilog 2005 syntax
case (select)

2'bOO: m-out = In-0;
2'bOl: m-out = In-I ;
2'bIO: rn-out = in-2;
Z'b11: rn-out = in-3;

endcase
endmodule

I/ Dataflow descrlptlon of two-to-four-line decoder
I / See Fig. 4.19. Note: The figure uses symbol E, but the
I1 Verilog model uses enable to Indlcate functionality clearly.
module decoder-2x4-df (D, A, B, enable);
output [0:3] D;
input A, B;
Input enable;

assign D[O] = -(-A & -B & -enable),
D[l] = -(-A & B & -enable),
D[2] = -(A & -5 & -enable),
D[3] = -(A & 0 & -enable);

endmodule

module t-Count-Ones;
parameter RI-slze = 8, R2-size = 4;
wire [RP-size -1: O] R2;
wire [R2_size -1: O] count;

400 Chapter 8 Design at the Register T r d f e r twel

wl re Ready;
W [Rl-size -1: 0] data;
W Start, clock, reset-b;
wlre [I : 01 state; /I Use only for debug
asslgn state = {MO.MO.Gl, MO.MO.GO);
Count-Ones-STR-STR MO (count, Reedy, data, Start, dock, -0);
Inltlal#550 $fintsh;
Initial begin clock = 0; #5 forever #5 clock = -clock; end
inltial fork
#1 reset-b = 1 ;
#3 reset-b = 0;
#4 reset-b = 1 ;
#27 reset-b = 0;
#29 reset-b = 1;
#355 reset-b = 0;
#65 reset-b = 1 ;
#4 data = 8'Hff;
#I45 data = 8'haa;
#25Start= 1;
35 Start = 0;
#5S Start = I ;
#85 Start = 0;
#395 Start = 1 ;
#405 Start = 0;

joln
endmodule

Testing the Ones Counter

The test bench in HDLExarnple 8.8 was used to produce the simulation results in Fig. 8.24.
Annotations have been added for clarification. In Fig. 8.24(a), reset-b is toggled low at
r = 3 to drive the controller into S-idle, but with Start not yet having an assigned value.
(The default is x.) Consequently, the controller enters an unknown state (the shaded wave-
form) at the next clock, and its outputs we unknown. When reset-b is asserted (low) again
at t = 27, the state enters S-idle. Then, with Start = 1 at the first clock after reset-b is de-
asserted, (1) the controller enters 3-1, (2) Load-mgs causes Rl to be set to the value of
&a, namely, 8'Hff, and (3) R2 is fded with 1's. At the next clock, R2 starts counting from 0.
Shift-left is asserted while the controller is in state S-2, and i n c t s is assem while the con-
troller is in state S-I . Notice that R2 is incremented in the next cycle after incrJP2 is as-
serted. No output is asserted in state S-3. The counting sequence continues in Fig. 8.24(b)
until Zero is asserted, with E holding the last 1 of the data word- The next clock produces
count = 8, and sfate returns to S-idle. (Additional testing is addressed in the problems at
the end of the chapter.)

Seaion 8.1 1 Race-Free DeJgn 401

met-b asserted (low), but Machine begins
Stari unknown countirr~ -

Name 60 90 120
I

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ,

clock
met-b

Start
Zero
E

Ready
Load~cgs
ShijtJej?
InCrJu

/ \
R2fllled with 1s R1 loaded with data

(a)

M U R E 824
Simuiatlon waveforms for count-of-ones circuit

R A C E - F R E E DESIGN

Once a circuit has been synthesized, either manually or with tools, it is necessary to verify that
the simulation results produced by the HDL behavioral model match of the netlist of the
gates (standard cells) of the physical circuit. It is h p r t m t to m l v e any mismatch, because
the behavioral model was presumed to be correct. 'here are various poOential mmes of mis-
match between the results of a simulation, but we will &&r od'w typically happns in
HDL-based design methodology. Three realities - m i to t&- poblcm: (1) A
physical feedback path exists between a datapa& lmit and a d d t ? b w ingots include
status signals fed back from the dampath unit; (2) M m k d - execute
immediately, and behavioral models simulate wid^ 0 pfqqadm t k & z mat ing
immediate changes in the outputs of combinatid logic its fixpi& change (i-e., changes
in the inputs and the outputs are scheduled in the same iim &&p dth dm&don); and (3) the

Chapter 8 Design at the Register TmnHer Ltvel

Shn
Zero

E

--
Name -
dock
rmt-b

FIGURE k24 (Continued)

R2 holds nuhe r of 1s

order in which a simulator executes multiple blocked assignnmts to the same v&le at a
given time step of the simulation is iadetemimte (i.e.. unpredictable).
Now consider a sequential machine with an HDL model in which all assignments are

made with the blocked assignment operam. At a clock pulse, the register m m in the
datapath, the state transitions in the cantroller, the updates of the next state and output logic
of the controller, and the updates to the s t a h signah in f&e are all scheduled to occur
at the same time step of the sirnulati011 Which emu- &t? S w that when a clock p u h
occurs, the state of the controller changes before the register o@om execute. The changq
in the state could change the outputs of the control unit. The new values of b e outputs would
be used by the datapath when it finally executes its assignments at that mne c l d pulse. TIM

kctlon 8.1 2 Latch-Free Dedgn 4 3

result might not be the same as it would have been if the datapath had executed its assign-
ments before the control unit updated its state and outputs. Conversely, suppose that when
the clwk pulse occurs, the &path unit executes its operations and updates its status signals
first. The updated status signals could cause a change in the vdue of the next state of the con-
troller, which would be used to update the state, The result could differ from that which
would result if the state had been updated before the edge-sensitive operations in the data-
path executed. In either case, the timing of register transfer operations and state transitions
in the different representations of the system might not match. Fortunately, there is a solu-
tion to this dilemma.

A designer can eliminate the somare race conditioos just described by observing the rule
of modeling combinational logic with blocked assignments and modeling state tsansitions and
edge-sensitive register operations with nonblocking assignments. A software race cannot hap
pen if nonblocking operators are used as shown in all of the examples in this text, because the
sampling mechanism of the nonblocking operator breaks the feedback path between a state
transition or edge-sensitive datapath operation and the combinational logic that f o m the next
~tate or inputs to the registers in the datapath unit. The mechanism does this because simula-
tors evaluate the expressions on the right-hand side of their nonblocking assignment state-
ments before my blocked assignments are made. Thus, the nonblocking assignments cannot
be affected by the results of the blaked assignments. In sum, always use the blocking opera-
tor to d l combinational logic, and use the nonblocking operator to model edge-sensitive reg-
ister opedons and state transitions.

It also might appear that the physical structure of a datapath and the controller together cre-
ate a physical {i.e., hardware), race condition, because the status signals are fed back to the con-
troller and the outputs of the controller are fed forward to the datapath. However, timing analysis
can verify that a change in the output of the controller will not propagate through the datapath
logic and then through the input logic of the controller in time to have an effect on the output
of the controller until the next clock pulse. The state cannot update until the next edge of the
clock, even though the status signals update the value of the next state. The flip-flop cuts the
feedback path between clock cycles. In practice, timing analysis verifies that the citcuit will
operate at the specified clock frequency, or it identifies signal paths whose propagation delays
are problematic. Remember the design must implement the correct logic and operate at the
speed prescribed by the clock.

8.12 LATCH-FREE DESIGN

Continuous assignments model combinational logic implicitlyY A f e d k k - h eoatinuous as-
signment will synthesize to combinalional logic, and tk inputsutput ~rdaibuhip of tbe logic
is automatically sensitive to all of the inputs of the c k u k In fiimolatirn tiw aimolatDa mon-
itors the right-hand sides of all continuous assigmwnts, d&cb a c b g c in any of the refer-
enced variables, and updates the left-hand side of an 8fFech.l assigmnent m t . Unlike a
continuous assignment, a cyclic behavior is not n e c e s d y compMy d t i w to all of the
variables that are referenced by its assignments statements. If a level-dt ivt cyclic behav-
ior is used to describe combinatid logic, it is essential that the m v i t y list include every

variable that is referenced on the left-hand ~ i d e of an assignment statement in the behavior.
Jf the list is incomplete, the logic described by the behavior will be synthesiwd with latches
at the outputs of the logic. This implementation wastes silicon area and may have a mismatch
between the simulation of the behavioral model and the synthesized circuit. These difficul-
ties can be avoided by ensuring that the sensitivity list is complete, but, in large circuifs, it is
easy to fail to include wery referenced variable in the sensitivity lisr of a level-sendive cyclic
behavior. Consequently, Verilog 2001 included a new opator ta redm tbe risk of acciden-
tally synthesizing latches.

In Verilog 2001, the tokens 0 and can be combined as @* or a(*) and are used without
a sensitivity list to indicate that execution of the associated statement is d t i v e to every vari-
able that is referenced on the right-hand side of an assignment statement in the logic. In effect,
the operator @* indicates that the logic is to be hte.rpretsd as level-dtive combinational
logic; the logic has an implicit sensitivity list 00mpse.d of all of the d l e s that are refer-
enced by the procedural assignments. Using the @* operstm will prevent &dental synthe-
sis of latches.

HDL Example 8.9
- -

The following Isvebnsltive cyclic khavior wlll synthesize a M a n n e l muitiplex-er

module 1nux-2~V2001 (output mg [3t: q y, Input PI: OJ a. b, input sel);
a*

y = sel 7 a: b;
endmodule

The cyclic behavior has an implicit aensitlvlty 1W &sting of a, b, and sel.

8.13 OTHER LANGUAGE FEATURES

Tlae examples in this text have used only those features of the k k g HDL that ace appropriate
for an intcoductmy course in logic design. V d o g 2001 contains f e a m that we very useful ta
designen, but wbich are not considered here. them are ~~d arrays, variable
~ s e l a c c s , ~ y b i t d p a r t s e l e c t s , s ~ r e g , ~ a n d p w t ~ o n s , s a d l o c a l ~
T h e s e h c e m e n t s a r e ~ i n ~ a d v d t e m u a i a g ~ o g ~ l aadVedlog2005.

PROBLEMS

Amwcrs to problems marked with * q p m at the end of th book.

&I* Explaia in words and w r i ~ HDL for the opakions s p i M by the follow@
ter m f e r notation:
(a) M t R 2 + 1 , R I t R
0) R3+R3 - 1
(c) If(& = I)thGn(RO+RI)ehif(S2 = I) tben(RO+K?)

8.2 Draw (1) a block diagram showing the controller, datapath unit (with internal registers), and s ig -
nals, and (2) the portion of an ASMD chart starting from an initial state. There are two control
signals: x d y. If xy = 01, register R is inmrnented by 1 and control goes to a second state. If
xy = 10, register R is cleared to zero and control goes kom the initial state to a third state. Oth-
erwise, conI101 stays in the initial state. Assume active-low synchronous reset.

8.3 Draw the ASMD charts for the following sta& eansitions:
(a) If x = 1, control goes from state S1 to state S2; if x = 0, generate a conditional operation

R < = R + 2 a n d g o f m S 1 t o S 2 .
(b) If x = 1, control goes from S1 to S2 md then to S3; if x = 0, control goes from S1 to Sj.
(c) S# h m state S1; then if xy = 00, go to S2; if xy = 10, go to S3; and if xy = 01, go to S1;

othemise, g to S3.

8.4 Show the eight exit paths in an ASM block emanating from the decision bxes tiyt check- the
eight possible binary values of three control variables x , y, and z.

8.5 Explain how the ASM and ASMD charts differ from a conventional flowchm Using Fig. 8.5 as
an illustration, show the difference in interpretation.

8.6 Consmct a block diagram and an ASMD chart for a digital system that counts the number of
people in a m m . The one door throu& which people enter the room has a photocell that changes
a signal x from I to 0 when the light is interrupted. They leave the room from a second door with
a similar photocell that changes a signal y fmm 1 to 0 when the light is interrupted. The datapath
circuit consists of an updown counter with a display that shows how many people are in the
room.

8.P Draw a block diagram and an ASMD chart for a circuit with two eight-bit registers RA and RB
that receive two unsigned binary numbers. The circuit performs the subtraction operation

R A + R A - RE

Use the method for subtraction described in Secdon 13, and set a bomw flip-flop to 1 if the an-
swer is negative. Write and verify an HDL model of the circuit.

8.p Design a digital circuit with three 16-bit registers AR, BR, and CR that perform the following
operations:
(a) Transfer two l db i t signed numbers (in 2's-complement representation) to AR and BR.
Ib) If the number in AR is negative, divide the number in AR by 2 and transfer the result to reg-

ister CR.
(c) If the number in AR is positive but nonzero, multiply the number in BR by 2 and transfer the

result to register CR.
(d) If the number in AR is zero, clear register CR to 0.
(e) Write and verify a behavioral model of the circuit.

8.p Design the controller whose state diagram is given by Fig. 8.1 I(a). Use one flipflq per state (a one-
hot assignment). Write, sbnulate, verify, a d - RRTL aod ~euctural models of tk oontroller.

8.10 The state diagram of a wnml unit is shown in Fig. P8.10. It has fwr and two inputs x and
y. Draw the equivalent ASM chart. Write and verify aVerilog m d l , of h e controw.

a1 l* Design the controiler whose state diagram is shown in Elg. P8.10. Use D fhpflops.

8.12 Design the four-bit counter with synchronous clear specified in Rg. 8.10.
8 Simulate Design-hrnple-8TR (see HDL Example 8.41, and verify that its behavior matches

that of the RTL description. Obtain state information by displaying W and GI as a concatenat-
ed vector for the state.

HwM m.10
Control state dingram for Problems 8.10 and 8.1 1

at5 Simulate D e s i g ~ ~ E x m p f s ~ and verify that it rrcwers au umx+ reset condition
during its operation, i.e., a "running metu w a "nset on-the-fly."

&l h e l o p a block diagram and an ASMD chart for a digital circuit it multiph two binary num-
bers by the repeated-addition method. For example, to multiply 5 X 4, tbe digital system evalu-
&theproductby ~themultiplkndfaurtimcs:5 + 5 + 5 + 5 = 2O.Dwignkcircuit.
Let the multiplicand be in eegister BR. the multiplier in register AR. aad th pduct in rtgim
PR.Anaddercirmit&ldsthemnkntsofBR t o P R . A ~ d g u a l h u b m w b w h e r A R
is 0. Write and verify a H o g M a v i d d of the c h i t .

8.1 71 Prove that the multiplication of two n-bit numbsrs gives a pdwt of length Ics than m equal to
2a bits.

&I&* In Fig. 8.14, the Q registsr holds the multiplier and the B register holds the m u l t i p l i d Assume
that each number consists of 16 bib
(a) How many bit6 can be expected in the pradm and w k e is it available?
(b) H o w m y bitsanin~Pcwnter,andwhrrththebinarynumberloadedintoitinitially?
(c) Design the circuit that checks for zero in the P camm.

a19 List the contents of regism C, A. Q, md P in a marmer similar to Tabk 85 drrring the p e g s
of multiplying the two n u m h 11011 (multiphud) and 1011 1 (dfipliet).

8.W Determine the time it takes to proms the muilipkfim a p a t h in the biuq multipk -'bed
in Smion 8.8. Assume that the Q register has n bits and the clock cycle is t nanosecods.

8.n Design the 001lml circuit of thc binary multiplier speeifi#r by the state diagm of FQ. 8.16,
using mdiplexus, a decaler, a d a *.

8.22 Fmm22showsm-ASMD-foragcqumtialbinary-.Wkdvgifym
rntmodelofthesys~em.~this~WihthatdesaibedbyPbtASMD~in~8.1S(b).

8.23 FigurePS.Bshmand~~eASMDchartfara~biDaryd~Writedverifyao
#nmodelafthe s ~ ~ t h i s ~ ~ t h a t d e s a i b e d b y t h e A S M D c h a r t i n F i g . 8.15W

RClllW a22
ASMD chart fw Problem &22

The HDL dmdption of a squential b h a q multiplier given in HDL Example 8 3 tncaps-
thededpoions of t h e o o n t r o l l e r d t h e ~ i a a s i q g l e ~ ~ . Wdoeaadwdify a
model that encapdates the conmlIer and dakqah in mpmtemodilles.

U S The sequcntkd binary multiplier dsscribed by the ASMD chart k Fig. 8.15 dms not camklm
wherberthemultiplicdorthe ~ d t i p k r i s O . ~ m , i t ~ f o r a f i x e d n w n & r
of cfmk cycles, indepadwtly of the data.
(a] Dntvop an ASMa chart for a m Mcient multiph that will M execution as soon

aseitbawdisfouadtobezem~

4U8 Chapter 8 Deslgn at the Register Trader . . lew1 ..

reset

Decrement counter
P < = P - 1

Add muliiuliwnd

IC, A, el<= Ic, A, el>> 1
17-bit regkter shifts to dw
right by one bit

FIG- PB.23
MMB chrrt for Pmbhm LM

@) Write an HDL description of the circuit. The controller d dacqh are to be acqsulated
in separate Verilog modules.

(c) Write a test plan and a test bench, and verify the circuit
836 M d I y the ASMD chart of the queatial binrrry multiplier shown in Fig. 8.15 to add a d shift

in the same clock cycle. Write and v d y an RTL description of the system.
kZI The second test bench given in HDL Frmqk 8.6 geaeretes a p d w t for all passible values of

the multiplicand a d multiplier. Verifyhg that each result is mum d d not be practicat so
modify the test bench to include a stammat that f a the expeaed praduct. Write additional
statements to compare tbe result produced by the RTL desu@tiw with the q t e d result. Your
s i m u l a t i o n i s t o p r o d u c e a n e m a ~ ~ t h e r e s u I t d t h e ~ . R e p e a t f o r ~ s e u c -
ma1 mdel of the multiplier.

8.28 Write the HDL smtural M p t i w of the multipEw desigrsed in S e c h 8.8. Use the blwk dl-
agram of Fig. 8.14a) and the am1101 circuit of Hg. 8.18. Simulate tbe design and verify its func-
tionality by using the test bench of HDL Example 8.6.

Problems 409

8.29 An ASMD chart for a finite state machine is shown in Fig. PS.29. The register operations are not
specified, because we are intere~ted only in designing the control logic.
(a) Draw the equivalent state diagram.
(b) Design the control unit with one flipflop per state.
(c) List the state table for the control unit.
Id) Design the control unit with three D flip-flops, a deccder, and gates.

FIGURE P8.29
ASMD chart for Problem 8.29

410 Chapter 8 Design at the Reghr Transfer lsvd

(e) M v c r table showing the m n l t i p h iaput d t i o n s for the coatzol uuit
(f) D c s i e p & m t r o l r u d t ~ h W m u l t i p W a m ~ d t h ~ @ B ~ a t l d a 3 X 8

dwader.
(g) U>he~of(fl,wriaeaadverifya~~~ftht~mIler~
(h) W r i t e m d ~ a n K I Z ~ ~ o f f h e c o n ~ .

8.00, What is the value of EineaehHDLbloelt, awning that RA = l?
(a) RArRA-1; @) RA-RA-1;

IfIRA-O)E=i: tf(RA==O)E-7:
elm E = 0; W E - 0 ;

8.31. Using the W o g HDL opwstors listed In Table 8.2, assume &at A = 4'bOlIO. B = 4'W010.
and C = 4'b0000 and dm the result oftbe following opmiolls:

A+B;A*B;A-B;*A&&AI&A*&&A;-PC;AII8;AUC;IA;A*B;ArB;
A I- B;

U.32 Consider the followiq always bhk - 0 (W CLK)
If ($1) R 1 c R l + R2;
Ik.H(SZ)RT=RI +'I;
a h R i <= Ri;

Usinga~tcolmterwiLparaILelldforRI (aeh~.6.191daf0ra-bitadda1drawaMoek
diagram showing the ammions of component8 md control signah far e m b l e spWi of
the block.

8.33 Tht multilewl east smumnt is often traaslaasd by a logic syatbeshs into bardwan multiplex-
en. How would you M a t e the followiag - block Into imdwm (assume esters of eight
biw each)?

-(-I
$0: R4=RO;
$1: R4oRI:
82: R4=R2;
83: R4 = R3;

mnd-

6.34 Thsdssignofacimit thatcounts t h e n u m k o f ~ i n a ~ k ~ o l d i a W m 8 . I O .
The block diagram for the b i t k &own h Fig. 8.22(a), a mqlerc ASMD chart fw tbe eir-
cuit in Fig. 8.22(c), and srtnrctrual HDL m&ls of the datapattr and oo~mller are given
inHDL~le8.8.Using~~tim~~~irtdicatedmthtASMDehan,
(a) WriteDa@JM,mRTL,M~ofthe~tmitdtbewes~,Wtiter

t e s t p l a n s ~ ~ ~ W d b e t e s a e d , a a d w r i o e a m b r a e h t o ~ ~
tbeplm.Exmte thekstplen toverify tbe~mditydtbedmpmhmifawlpaodueG
m o t a m i s i m ~ ~ ~ t b e ~ p l e n t o ~ w w e f w m s ~ i n a d m u t a t i r m ,

Ib) Write CmmUerJEH, mi l€lL dscdptim of the control unit of tbe ma eaunm. Writs a
tcstplrrasp6c~gtbeAmctionelity~willbelGgteQdwritta~~mtmpr6-
m e n t t h e p l a n . ~ ~ o e s t p l a n m v f f i f y ~ ~ c y o f r t # # l a a d u a i f a n d p ~ o -
dwe mocated sirnuladon d t s dating the mt plan to the waveforms prOaud in a
~imuIati0~.

(c) Write COW-OnesJEH-BEH, a *level module mqmbthg and hegrating
Conholler-BEH and DrrtapahJEB. Writs a test plan and a tat bench, and vcrify the

Problems 411

description. Roduce annotated simulation resdts relating the test plan to the wa~ef0rILIS pro-
duced in a simuIation.

(d) Write ConttwllrrJEH-IHot, an RTL description of a one-hot controller implementing the
ASMD chart of Fig. 8.22(c). Write a test plan specifying the functimali~ that will be test-
ed, and write a test bench to implement the plan. Execute the test plan and @uce annotat-
ed simulation results relating the test plan to the waveforms produced in a simulation.

(E) Write Count-Ones-BEH-IJYot, a top-level module encapsulating the module
ComllerBEH-1308 and DatapathJEH. Write a test plan and a test bench, and verify
the description. Produce annotated simulation results relating the test plan to the wavefom
produced in a simulation.

8.35 The HIlL description and test bench for a circuit that counts the number of ones in a register are
given in HDL Example 8.8, Modify the test bench and simulate the ckcuit to verify that the sys-
tem operates correctly for the following patterns of data: 8 S'W, 8'hOf, S1hfO, 8'h00,8'haa,
S'hOa, 8 ' M , S'h55, S1h05, 8'hf50,8'ha5, and 8'hSa.

8.36 The design of a circuit that counts h e number of ones in a register is carried out in Section 8.10.
The block diagram for the circuir is shown in Fig, 8.22(a), a complete ASMD chart for this cir-
cuit *pars in Fig. 8.22(c), and shuctural HDL models of the datapath and controller are given
in HDL Example 8.8. Using the operations and signd names indicated on the ASMD chart,
(a) Design the control logic, employing one flip-flop per state (a one-hot assignment). List the

input equations for the four flip-flops.
(b) Write Controller-Gates-IJIot, a gate-Ievel HDL structural description of the circuit, using

the conk01 designed in part (a} and the signals shown in the block diagram of Fig. 8,22(a).
(c) Write a test plan and a test bench, and then verify the controller.
(d) Write Comt-Ones-Gates,l_Ilotm, a top-level module encapsulating and integrating in-

stantiations of ConfmIIer-Gates J J f o t and DatapathSTR, Write a test plan and a test bench
to verify the description. Produce annotated simulation results relating the test plan to the
waveforms produced in a simulation.

8.37 Compared with the circuit presented in HDL Example 8.8, a more eficient circuit that counts the
number of ones in a data word is described by the block diagram and the paltially completed
ASMD chart in Fig. P8.37. This circuit accomplishes addition and shifting in the same clock
cycle and adds the LSB of the data register to the counter register at every clock cycle.
(a) Complete the ASMD chart.
(b) Using the ASMD chart, write an RTL description of the circuit. A top-level VeFilog mod&

Count-of-onesJJteh i s to instantiate separate modules for the datapath and control units.
(c) Design the control logic, using one flip-flop per state [a one-hot assignment), List the input

equations for the flip-flops.
(d) Write the HDL structural description of the circuit, using the mtrdler designed in part (b)
d the blmk diagram of Fig. F8.37(a).

(e) Write a test bench to test the circuit. Simulate the cirmit to the opalion -bed in
both the RTL and the scructaral pgrams.

8.39 The addition of two signed binary numbers in the sigaed-- -on follows the
rules of ordinary arithmetic: If the two numbers have ihe same sign (bth @ti= or both nega-
tive), the two magnitudes are added and the sum has dwi cmwan sip; if the two numbem have
opposite signs, the smaller magnitude is s u W from k largff d tfie result has the sign of
the larger magnitude. Write an HDL behavioral dmmjptirn for adding two 8-bit signed numbers
in signed-magnitude representation and verify. ' h e leftmost bit of the ntlmber holds the sign and
the other seven bits hold the magnihlde.

41 2 Chapter 8 Design at the R e g W Transfer W

I a l

FIGUUE m37
(a) Alternative ckuitfara one^ raunfrr
@) ASMD Chrat for Problem k37

8.W For the circuit desigwd In Problem 8.1 6,
(a) Write and verify a mmnral HDL description of the circuit. The datapab aad conmkr are

to be d e d b a d ia separate anits.
(b) W r i t t a P d ~ a p R n . ~ m o f t h e c i r c u i ~ T b e ~ a n d & e r m t o b t d e

scribed in sepmte wits.

8.40 M d i f y rhe Mock diagram of the qwntial multiplier given in Flg. 8.1qa) aPd the ASMD cbart
in Ap. 8.15(bl to MIX a system hat d t i p k 32-bit but a Wit (bytewide) extee-
n a l ~ t h s . T h e ~ b m ~ ~ h b (i a l t i a l l r e s e t ~ ~ W i s a s s e r r c d , the
machine is to f a h rhe data bytes from a single &bit data bus h clock cycles (multi-
pticand bytes fmr foUowd by m M p k bytla$ last dgmi6mz byte first) and stMe the d&ta in
&tapah registers. Got- is to C a s m d for one cycle of tfw c h k w h th msfer is corn-
plete.Wtaen R u n i s a s s e r t a d , t b e ~ b t o k ~ ~ . D o n e J ~ i s c o beas-
senedforoaecl&~wh~rrmldpUeatiOllis~Whtaa~Sard9maisrtssertad,
each byte of the product is to be placed w an &bit o q u t bus fm ane clock cycle. in w p n c e ,
beginaing with the least signibut byte. T h maehine is to Fetum tD the initial gtate after tbc plod-
u c t k b e e n t f i i n s ~ ~ ~ ~ a s ~ ~ t o ~ w F e a i v e d a t a w h l l e
the pmduct is bciag fwmed. Consider d m other feama tbet might elimiDaae needless multipli-
cation by 0. For exampk do not continrte to d t i p l y if the shifted mdtiplier is empty of 1's.

8.41 The block diagmn d pdal iy complad ASMD chm in Fig. P8.41 -be tbe MOT of a
-stage pipehe that acts as a 2:l decimCm with a parallel Inpn a d wrtpa Dacimators are
wd in digital signal 7 to move dm hrym a damparb with a high cloek ~luc to a data-
~ w i ~ a ~ o w c r c l a e k r a o e , ~ v e r e i n g d a c a f i r o m a ~ I ~ t o a ~ f o r m a t i n t ~
p r o e e s s . h ~ ~ ~ e M i n ~ d d a t a ~ b e r m n s f a r o d i a t o t b e p i ~ a t t w i c e
therateat which t h e e o a t t n r s o f t f i e ~ ~ ~ ~ ~ ~ ~ btdrumpsdintorboldiagregisoerorconsumed
b y s o m e ~ . ~ c o p t # l t s o f b ~ g ~ R O ~ b e ~ m ~ y , t o ~ l i g h

Problems

{PI, PO) <= {O,O)

PO<= PI

FIGURE ~ 8 ~ 4 1
Two-stage plpellne mgister: Datapath utdt and ASMD chart

an overall parallel-to-serial conversion of the data stream. The ASMD c h a t indicates that the
machine has synchmnous reset to S-idle, where it waits until nt is de-asserted and En is assert-
ed. Note h t synchronous transitions which would occur fiom the other states to S-die under the
action of rst are not shown. With En asserted, the machine transitions from S-idle to S-I. ac-
companied by concurrent register ooperations that load the MSByte of the pipe with Duta and
move the content of PI to the LSByte (PO). At the next clock, the state goes to Sfirl l , and now
the pipe is full. If Id is asserted at the next clock, the machine moves to S-1 while dumping the
pipe into a holding register RO. If Id is not asserted, the m a & h enaers S-waif and remains there
until Ld is asserted, at which time it dumps the pipe d returns to S-1 or to S-dle, depending
on whether En is asserted, too. The data rate at Ro is one-half the Tate at which data are supplied
to the unit from an extemd datapath.
(a) Develop the complete ASMD chart.
(b) Using the ASMD chart developed in (a), write and verify an HDL m d d of the datapath.
(c) Wrik and verify a Verilog behavioral d l of the control unit
(d) Encapsulate the datapath and cmmlIer in a toplevel module, and verify the integrated

system

414 Chapter 8 W g n at the R@ster Transfer tcvel

REFERENCES

Amom, M. G. 1999. kri&g Digiral -r Design. Upper Saddtt River, NJ: Rmkc Hall.
B w m . J. 1997. A Mdhg HDL P ~ U W I : Allmtnwn. PA: S ~ a r Galaxy h.
BWKER, J. 1998. Bdhg HDL Synhmis. Allentown, PA: Star Cirlaxy k.
C m , M. D. 1999. Mode&, S-b, MdRapid Pmru&&g w&h Wr&g HDL Uppa Sad-
& River, NJ: Prenda HalL
Cmm, M D. 2003. Mdlhg, -&, a n d ~ h m f y p h g with k&gHDL Upper Sad-
dle Rim, NI: Prantim Hall.
CURB. C. R. 1W1. Dss&uhg Logk Systm~ Using S&& Machbw~. New Ywk: McGraw-Hill.
Hhm. J. P. 1993. InrrrPdwim to Digi#l t o g k Dam R d h g , Mk AiWm-Wdty.
IEEE Stmsdnld H w & m Descrijnh Langttagc Barad wr rlbd Wrilog H ~ H Dcscriph
lnnguage (EEE Std 1364-2001). 2001. New Y& Inshtc of Electrical and Ekmonics
m#-=.
MANO, M. M. 1993. Cumputer System Arrkltechrm, 3d ed. Uppcr Saddle Rim, NY: Rentioe
w.
Mmo, M. M.. and C. R Kraw. UKIO. Logic a d C-r &sign F-, 31d d U~pper
Saddle River, NJ: Renth Wall.
P- S. 2003. Wribg HDL: A G&k to Digid Design d S y n k i s . Moun?aio View,
CA: Sunsoft Ms (a Rentice Hall Title).
S m , D. 1.1996. HDL Chip Derigrr Madim, AL: DooDe Publications.
THOMAS, D, E., md P. R. MOORBY. 2002. The Udbg H a w Description language, 5th ad.
B o w Kluwer A d d c Publisks.
W m m ~ , D., and F. PWOSSB& 1987. Tk Arb of Digifal DRPign, 2d ed. Cliffff N&
PrentbHall.

	08 – Design at the Register Transfer Level.PDF
	334.tif
	335.tif
	336.tif
	337.tif
	338.tif
	339.tif
	340.tif
	341.tif
	342.tif
	343.tif
	344.tif
	345.tif
	346.tif
	347.tif
	348.tif
	349.tif
	350.tif
	351.tif
	352.tif
	353.tif
	354.tif
	355.tif
	356.tif
	357.tif
	358.tif
	359.tif
	360.tif
	361.tif
	362.tif
	363.tif
	364.tif
	365.tif
	366.tif
	367.tif
	368.tif
	369.tif
	370.tif
	371.tif
	372.tif
	373.tif
	374.tif
	375.tif
	376.tif
	377.tif
	378.tif
	379.tif
	380.tif
	381.tif
	382.tif
	383.tif
	384.tif
	385.tif
	386.tif
	387.tif
	388.tif
	389.tif
	390.tif
	391.tif
	392.tif
	393.tif
	394.tif
	395.tif
	396.tif
	397.tif
	398.tif
	399.tif
	400.tif
	401.tif
	402.tif
	403.tif
	404.tif
	405.tif
	406.tif
	407.tif
	408.tif
	409.tif
	410.tif
	411.tif
	412.tif
	413.tif
	414.tif

