Lecture

PROKON PROGRAME

Ahmed Mansor

..To you ..

Part 1

DESIGN APEX CONNECTION

INTRODUCTION :

تستخدم ال APEX CONNECTION لربط ال Truss في ال

و يستخدم في حاله البحور الكبيرة لل Truss وعند وجود أحمال عالية فوق المنشأ أو عليه وعند الحاجه .

Example : Design the Apex Connection and Drawing the section ?

Given :

- 1-Connection Type : Extended Plate : Top & Bottom
- 2- Select section Beam = 406 * 140 * 39 I Section
- 3- Angle Beam = 15 Degree
- 4- Hunch Depth = 300 mm
- 5- Hunch length = 600 mm
- 6- Applied load in Beam :
- -Dead load (shear = 90 Kn , Axial = -100 , Moment = -100)
- -Live load (shear = 50 Kn, Axial = -25, Moment = -135)
- -Wind Load (shear = -20 Kn , Axial = 100 , Moment = 120)

Steps Design the Apex connection :

1-Connection Type :

- الربط يكون بأستخدام اللحام فقط : 1-Welded
- الربط يكون بأستخدام اللحام و المسامير لكن شريحه الربط ليست ممتدة لأعلى و لا لأسفل : 2- Flush
- الربط يكون هذا بأستخدام اللحام و المسامير و شريحه الربط ممتدة لأسفل و اعلى : Extended Top & Bottom
- الربط هذا بالمسامير و اللحام و تكون شريحه الربط ممتدة لأعلى : 4-Extended Top
- الربط هذا يكون بالمسامير و اللحام و تكون شريحه الربط ممتدة لأسفل : Extended Bottom

" Choose Extended Top & Bottom "

2-Select section Beam :

3-Angele Beam :

4-Hunch Length & Hunch Depth :

Final Input Value in Table " Properties"

Connection Type	View	Extended End Plate : Top & Bottom
Beam	Select	406x140x39 I1
Beam Angle		15
Haunch Depth	(mm)	300
Haunch Length	(mm)	600

5-Load Table :

U		٠			
Load Case	Shear	Axial	Moment	SLS Factor	
DL	90	-100	-100	1	
LL	50	-25	-135	1	
WL	-20	100	120	1	

2-Design Table :

و بالتالي بعد أدخال الأحمال و خصائص القطاع ، نذهب لجدول النتائج الخاصة بالتصميم و هيا كالتالي :

End Dista	Width	(mm)	142
	Extent Above Beam Flange	(mm)	50
chu Plate	Extent Below Haunch	(mm)	50
	Thickness	(mm)	22
Bolts	Diameter	(mm)	16
	Above Top Flange		1
	Below Top Flange		None
Rows of Boits	Above Haunch		None
	Below Haunch		1
	Row Spacing	(mm)	N/A
Palt Officeta	Web	(mm)	34
boit Offsets	Flange	(mm)	25
	Above Haunch	(mm)	25
Weld Sizes	Beam Flanges	(mm)	7
weld Sizes	Beam Web	(mm)	7

ثم نرى في الأسفل الجدول الخاص بال Check الخاصة بالقطاع و في هذا الجدول تعرض خانه للقوى المعرضة على الجزء في القطاع و أيضا مدى تحمل هذا الجزء للقوى المحملة عليه ، و يكون التصميم غير أمن في حاله ظهور أي خانه من الخانات التالية باللون الأحمر مما يعني وجوب تغير مدخلات و ابعاد القطاع لتكون قوى تحمل الجزء أكبر من القوى عليه .

	Design Checks					
	Check	LC	Applied	Capacity	Units	%
1	Flange Weld	WL	216.5	267.9	kN	80.8
2	Web Weld	DL	122.5	1392.7	kN	8.8
3	Bolt Shear	DL	30.6	63.1	kN	48.5
4	Bolt Slip	DL	102.1	119.6	kN	85.4
5	Bolt Combined Forces	DL	1.3	1.4	kN	93.3
6	Bolt Tension & End Plate Bending	LL	191.2	198	kN	96.6
7	End Plate Bearing	DL	30.6	165.8	kN	18.5

الملاحظ أيضا وجود أزرار مثل زر " Reset " و زر " Optimise Design " وزر "Error"

أولا : Error هو يستخدم فقط في حاله وجود أخطاء في المدخلات الخاصة بك مما يؤدي الى عدم ظهور النتائج بشكل دقيق بالتالي يحدد لك الأخطاء في المدخلات لتعديلها للحصول على نتائج صحيحه للتصميم .

ثانيا : زر ال Reset عند الضغط على هذا الزر تظهر لنا قائمه تحمل أسماء قوائم نتائج التصميم كما في التالي :

و بالتالي عند اختيار قائمه منها أو عند الرغبة في اختيار كل القوائم نضغط على زر Reset All

و بالتالي عند اختيار القوائم المرادة و الضغط على زر Ok فأننا هنا نحول التصميم من التصميم المقترح من البرنامج ال الى التصميم ال Optimise و هو التصميم ال Minimum كما بالشكل التالي :

	Width	(mm)	Optimise	
End Dista	Extent Above Beam Flange	(mm)	Optimise	
chu Plate	Extent Below Haunch	(mm)	Optimise	
	Thickness	(mm)	Optimise	
Bolts	Diameter	(mm)	16 💌	
	Above Top Flange		1	
Davia of Balta	Below Top Flange		None	
Rows of Bolts	Above Haunch		None	
	Below Haunch		1	
	Row Spacing	(mm)	N/A	
Polt Officeto	Web	(mm)	34	
boit Offsets	Flange	(mm)	25	
	Above Haunch	(mm)	25	
Wold Sizes	Beam Flanges	(mm)	7	
weiu sizes	Beam Web	(mm)	7	

و للحصول على النتائج ال Minimum التي تسمح لي بالحصول على أقل الأبعاد و التكلفة مع بقاء القطاع أمن نضغط على زر " Optimise"

Errors	<u>R</u> eset	Optimise Design
--------	---------------	-----------------

3-Calculation Sheet :

هيا عبارة عن Sheet جاهزة للطباعة و تحتوى على كل النتائج و ال Check الخاصة بالتصميم اضافه لكافه افتر اضات البرنامج في التصميم و كافة الرسومات و التوضيحات للتصميم الموجود .

4-Darwing :

في هذه القائمة تعرض الرسم النهائي للقطاع المصمم اضافه للأبعاد و المساقط المختلفة تمهيدا لطباعتها و تصميم القطاع كما في الشكل :

كما أنه أيضا يمكن عرض ال 3D للقطاع باختيار الأيقونة

ليعرض بالشكل التالي و التحكم في حركته في الشريط على يمين الشاشة

Part 2

Design Beam-Column Connection "Welded"

Introduction :

في هذه الحالة سوف نصمم طريقه الربط بين الأعمدة و الكمرات في المنشأت المعدنية بأستخدام برنامج بركون

Example 2 : Design the Connection Between the Column and Beam in steel structure and the shop drawing ?

Given:

- 1-Connection Type: Welded.
- 2-Section Column = 152*152*23 H section
- 3-Section Beam = 200 * 100 I Section
- 4- Column Extended Above = 0 mm
- 5-Angle Beam = 16 mm
- 6 Hunch length , Hunch Depth = 0 mm
- 7-loading:
- Case 1 = (30 kN Shear 8 Axial 29 Moment)
- Case 2 = (34 kN shear 9 Axial 16 Moment)

Steps Design :

Connection Type :

- الربط يكون بأستخدام اللحام فقط : 1-Welded
- الربط يكون بأستخدام اللحام و المسامير لكن شريحه الربط ليست ممتدة لأعلى و لا لأسفل : Flush
- الربط يكون هذا بأستخدام اللحام و المسامير و شريحه الربط ممتدة لأسفل و اعلى : Extended Top & Bottom 3-
- الربط هنا بالمسامير و اللحام و تكون شريحه الربط ممتدة لأعلى : 4-Extended Top
- الربط هنا يكون بالمسامير و اللحام و تكون شريحه الربط ممتدة لأسفل : Extended Bottom 5-

لكن في هذا المثال سنصمم الربط باللحام فنختار Welded

Column Select section :

Choose = 152 * 152 * 23 H section

Beam Select Section :

Choose = 203 * 133 * 25 I section

Loading :

Ult	SLS Factor			
Load Case	Shear Axial Moment (Divid (kN) (kN) (kNm) get Lo		(Divide to get Loads)	
C1	21.6	4.13	23.46	1
C2	20.25	3.87	11.62	1

Design Icon :

توضح لنا هذه الخانه الأبعاد المطلوبه في عمليه الربط باللحام و نلاحظ أن كل الخانات المتعلقة بالمسامير مغلقه لأن وسيله الربط هيا اللحام كما بالشكل التالي :

	Width	(mm)	N/A
	Extent Above Beam Flange	(mm)	N/A
End Plate	Extent Below Beam Flange	(mm)	N/A
	Thickness	(mm)	N/A
	Stiffeners		N/A
	Width	(mm)	38
	Top Stiffener Thickness	(mm)	6
Column Stiffeners	Bottom Stiffener Thickness	(mm)	5
	Shear Stiffener Thickness	(mm)	None
	Shear Stiffener Orientation		None
Web Blates	Layout		None
Web Flates	Thickness	(mm)	5
Top Backing Plate	Thickness	(mm)	N/A
Bottom Backing Plate	Thickness	(mm)	N/A
Bolts	Diameter	(mm)	N/A
	Above Top Flange		N/A
	Below Top Flange		N/A
Rows of Bolts	Above Bottom Flange		N/A
	Below Bottom Flange		N/A
	Row Spacing	(mm)	N/A
	Web	(mm)	N/A
Bolt Offsets	Flange	(mm)	N/A
	Above Haunch	(mm)	N/A
	Beam Flanges		9
	Beam Web	(mm)	6
Welds	Top Stiffener	(mm)	6
	Bottom Stiffener	(mm)	6
	Shear Stiffener	(mm)	N/A

و يوضح لنا الجدول في اسفل الأيقونة جدول ال Check و هو عبارة عن جدول يوضح لنا مدى تحمل القطاع للأحمال عليه و يكون القطاع هنا غير أمن في حاله وجود أي ايقونة في هذا الجدول باللون الأحمر

	Design Checks					
	Check	LC	Applied	Capacity		%
1	Flange Weld	C1	122.1	337.2	kΝ	36.2
2	Web Weld	C1	21.6	315.2	kΝ	6.9
3	Col. Web Tension Yielding	C1	118	195.3	kΝ	60.4
4	Col. Web Compression Crippling	C1	122.1	234	kΝ	52.2
5	Col. Web Compression Buckling	C1	122.1	781.1	kΝ	15.6
6	Col. Web Shear	C1	122.1	165.7	kΝ	73.7
7	Col. Flange Bending	C1	118	166.8	kΝ	70.7
8	Col. Flange Bearing	N/A	N/A	N/A	kΝ	N/A
9	Bolts & End Plate Tension & Bending	N/A	N/A	N/A	kΝ	N/A
10	End Plate Bearing	N/A	N/A	N/A	kΝ	N/A
11	Bolt Shear	N/A	N/A	N/A	kΝ	N/A
12	Bolt Shear & Tension	N/A	N/A	N/A	kΝ	N/A
13	Bolt Slip	N/A	N/A	N/A	kΝ	N/A

Calculation Sheet :

هيا عبارة عن ورقه جاهزة للطباعة توضح النتائج بشكل تفصيلي جدا بالخطوات و جاهزة للطباعة كما بالشكل التالي :

Drawing:

هيا عبارة عن خانه توضح لنا الرسم النهائي للقطاع بالإضافة الى كافه الأبعاد التصميمية المطلوبه ليكون جاهز للطباعة و الذهاب للتصنيع و الأعداد في أي وقت و يمكن أن يكون أيضا كمنظور 3D فنختار ايقونة 3D على يسار الشاشة

Part 3

Design The Base Plate

Introduction :

Example : Design the Base Plate in Steel Structure , the following Data ?

Input Table :

1-Column :

و في هذه الخانه يتم تحديد أبعاد قطاع العامود المتصل بالقاعدة المراد تصميمها كالتالي :

Column	
254x254x73	•

2-Column Section Type :

من هنا يتم اختيار شكل قطاع العامود المتصل بالقاعدة المراد تصميها كالتالي :

-Column Section Type	
⊙ I ○H⊙	HOI
\circ	
User Dimensions	Dimensions
Include non prefe	rred sizes

3-Base Plate Dimension:

1-Plate Length L :

2-Plate Width W:

هو عرض القاعدة المراد تصميمها .

3-Offset :

```
هيا المسافة بين قطاع العامود و بين نهايه القاعدة و تكون هذه المسافة على محورين x – y
```

4-Bolt Distance :

```
هيا المسافة بين المسامير و بين نهاية القاعدة و تكون المسافة على محورين x – y
```

Base Plate Dimensions				
Plate Length L	(mm)	415		
Plate Width W	(mm)	415		
Offset L1	(mm)	80.40		
Offset W1	(mm)	80.50		
Bolt distance a 1	(mm)	35		
Bolt distance a2	(mm)	35		
Bolt distance a3	(mm)	35		
Bolt distance a4	(mm)	35		

4-General Parameter :

و في هذا الجدول يتم وضع خصائص المواد المستخدمة مثل (الحديد المستخدم – و اللحام – و الخرسانة – و درجه المعامير المستخدمة بربط العامود في القاعدة)

Concrete Fcu :

Fc = 0.8 Fcu

Plate Fy :

هيا مقاومه الحديد للخضوع

Welds Fuw :

Tensile strength of weld metal

قوة الشد للحام

Grade of Bolts :

Table (6.1) Nominal Values of Yield Stress F_{yb} and Ultimate Tensile Strength F_{ub} for Bolts

Bolt grade	4.6	4.8	5.6	5.8	6.8	8.8	10.9
F _{уь} (t/cm²)	2.4	3.2	3.0	4.0	4.8	6.4	9.0
F _{ub} (t/cm²)	4.0	4.0	5.0	5.0	6.0	8.0	10.0

5-Loading Tables :

Load Case	P (kN)	Mx (kNm)	My (kNm)	Load Factor	
1	500			1	
2	700	23	16	1	
3	600	30	12	1	-

Design Icon :

في هذه الخانه يتم توضيح تأثير أقصى حاله تحميل على القاعدة و التصميم على اساسها و أيضا مقارنه القاعدة في حاله استخدام Stiffened plate و مع عدم استخدامه كما توضح أيضا اقصى عزم في الحالتين كما يمكن در اسة حالات التحميل الأضعف من خلال الضغط على زر

Previous LC Next LC

Calculation Sheet :

في هذه الأيقونة يتم وضع كل المدخلات و المخرجات التصميمية و كذلك الرسومات في صورة ورقة جاهزة للطباعة في أي وقت كما بالشكل التالي :

Base plate design by PROKON. (Basepl Ver W3.0.03 - 06 Apr 2016)

Design code : SABS 0162 - 1993 Title : Default Example

Input Data

Column on Base Plate: 254x254x73

Base Plate Geometry

Plate Length L	(mm)	415
Plate Width W	(mm)	415
Offset L1	(mm)	80.40
Offset W1	(mm)	80.50
Bolt distance a1	(mm)	35
Bolt distance a2	(mm)	35
Bolt distance a3	(mm)	35
Bolt distance a4	(mm)	35

General Parameters

Concrete: fcu	(MPa)	25
Plate fy:	(MPa)	300
Welds fuw:	(MPa)	460
Bolt Grade		4.8
Use studs (Y/N)		N

Loads

Load Case	P (kN)	Mx (kNm)	My (kNm)	Load Factor
1	500			1
2	700	23	16	1
3	600	30	12	1

Drawing Icon :

في هذه الخانه تظهر لدينا النواتج النهائية مصحوبه بالرسومات التصميمة النهائية للقطاع فالتعرف على خانات الجدول كالتالي :

Drawing File Name		BASEPL
Scale 1:		10
Thin pen	(mm)	0.25
Medium pen	(mm)	0.35
Text height	(mm)	2.5
Plate thickness	(mm)	20
Column welds	(mm)	6
Stiffener thickness	(mm)	10
Stiffener welds	(mm)	5
Bolt size (Metric):		10
Hole size	(mm)	11
Number of bolts/side(ve	2	
Number of bolts/side(he	2	
Detail number		1

Scale :

Thin Pen:

Medium Pen :

Text height :

حجم الخط على الرسم التصميمي للقطاع

Plate Thickness :

Column Welded :

Bolt size :

مقياس المسمار

Hole size :

مقياس فتحه المسمار

Number of bolts \setminus side (vert) :

Number of bolts \setminus side (Hor) :

عدد المسامير في الاتجاه الأفقى

في حاله الرغبة في وضح ابعاد الرسمة من غير اسهم يتم اختار التالي :

و أخيرا تكون الرسمة التصميمة النهائية للقطاع كالتالي :

Part 4

Design The Concrete Beam " T - Section "

Introduction:

هيا عبارة عن الكمرة المتصلة بالبلاطة من اتجاهين و بالذلك كان شكل القطاع الخاص بها T-section

Example : Required Design Beam "B"

Given :

 $Fcu = 25 N/mm^2$

Steel 360 / 520

ts = 140 mm

F.C = 2 & L.L= $2 kN/m^2$

O.W. _{Beam} = 3 kN/m

Solution :

أولا نقوم بفتح برنامج بروكون ومن قائمه " Concrete " نختار أيقونة ConSec كما بالشكل التالي :

CB	T Captain	Slab	RecCol	CirCol	GenCol	Wall	Base Base	CrWidth	ConSec	Punch
В	eams / Slal	bs		Co	mponents	ts Sections				

عند فتح النافذة يظهر لنا جدول المدخلات لتصميم القطاعات على اساسها كما بالشكل و نبدأ بدر اسة كل خانه على حدى كما بالشكل التالي :

(kNm)	
(kNm)	
(kN)	
(mm)	250
(mm)	500
(mm)	750
(mm)	220
(mm)	40
(mm)	40
(mm)	40
(Mpa)	
(Mpa)	
(Mpa)	
	10
	(kNm) (kNm) (kN) (mm) (mm) (mm) (mm) (mm) (mm) (Mpa) (Mpa)

1-ULS Bending Moment M :

و هو عبارة عن العزم المؤثر على القطاع المراد تصميمه و لحسابه يجب حساب الأحمال المؤثرة على القطاع أولا و رسم العزوم الناتجة عنه ثانيا ودراسة طبيعة توزيع الأحمال في البلاطة كما يلي :

ثانيا : حساب وزن البلاطة و هو يساوي = الوزن النوعي للخرسانة * سمك البلاطة + حمل التغطية + حمل الحي

$$Ws = 0.14 * 25 + 2 + 2 = 7.50 \text{ kN}/m^2$$

قبل حساب الحمل الكلي يجب در اسة توزيع الأحمال على البلاطة بمعنى هل البلاطة One way أو Two way

$$5/4 = 1.25 \text{ m}$$

كما بالشكل :

في هذه الحالة لتحويل الحمل المؤثر على الكمرة لشكله المعتاد في حاله رسم العزوم نستخدم معامل التصحيح " ألفا "

لكن هذه القيمة في حاله ال Trapezoidal لكن عند در اسة الكمرة المراد تصمميها نجد أن الأحمال عليها على شكل مثلثات كما بالشكل التالي :

و بالتالي lpha في حاله الحمل على شكل مثلث تساوي 0.666 و بالتالي فأن توزيع الحمل يكون كالتالي :

الحمل الموزع على الكمرة = وزن الكمرة + ٢ * ٥ * وزن البلاطة * (الطول الصغير ٢)

We =
$$3 + 2 * 0.666 * 7.50 * (4 \setminus 2) = 23$$
 kN/m

بالتالي أن القوة التالية هيا Working و يتم تحويلها ل Ultimate بضربها في 1.5

We.UL =
$$23 * 1.5 = 34 .5 \text{ kN/m}$$

و بالتالي يكون الحمل الموزع على الكمرة كالتالي :

34.5

و بالتالي يتم تصميم كل قطاع مختلف في الكمرة من حيث العزوم بالتالي يوجد لدينا ٤ قطاعات و ليكن سنختار قطاع الذي يوجد عليه عزم 46 و بالتالي هو قيمه العزم الذي سندخلها في البرنامج

ULS Bending Moment M (kNm) 46

2-ULS Torsion Moment T :

و المطلوب هنا ادخال عزم الالتواء المؤثر على القطاع المحدد و بالتالي يجب أن نعلم أن عزم الالتواء يؤثر على القطاعات الخرسانية في حالات محدودة فقط و هذه الحالة ليست منها بالتالي نعتبر أنه بصفر .

ULS Bending Moment M	(kNm)	46
ULS Torsion Moment T	(kNm)	0

3-ULS Shear Force V :

سنصمم القطاع فقط على المومنت بالتالي نعتبر ان قوى القص تساوي صفر

4-Web Width B:

5-Total Height H :

طبقا للكود فأنها لا تقل عن " ٣ * سمك البلاطة " و بالتالي فأن قيمه H تساوي H تساوي H * 3 * 140 = 450 mm

6-Flange Width Wf :

1-C.L – C.L هيا المسافة من منتصف البلاطة التي تبدأ منها الكمرة الى منتصف البلاطة التي تنتهي بها الكمرة 2+4+4+2 = 12 m = 12000 mm

> 2-16 * ts + b حيث ان ts هيا سمك البلاطة و ال b هيا قيمه ال Web Width B 16*140 + 250 = 2490 mm

K=0.70

و بالتالي نأخذ القيمة الأقل من القيم الثلاث السابقة و تكون مساوية ل 810 mm

7-Flange Height Hf :

يكون هذا السمك مساويا لسمك البلاطة و هو mm

8-Reinf Centroid depth :

هذه القيم هيا عبارة عن المسافات بين نهايه القطاع و بين حديد التسليح و نأخذها غالبا جميعا ب 50 mm

Reinf centroid depth DcT	(mm)	50
Reinf centroid depth DcB	(mm)	50
Reinf depth sides DcS	(mm)	50

9-Fcu – Fy :

هيا خصائص المواد المستخدمة في التصميم Fcu = 25 Fy = 360

	*					•					
Design Results											
Moment			Shear		Torsion (web)		Torsion (flange)				
Muc	442.5	kNm	v	0.00	MPa	v	0.00	MPa	v	0.00	MPa
As	387	mm²	vc	0.46	MPa	vt	0.00	MPa	vt	0.00	MPa
As'	0	mm²	Asv/Sv	0.0000		Asv/Sv	0.0000		Asv/Sv	0.0000	
Amin	202	mm²	Asv/Sv nom	0.3194		As	0	mm²	As	0	mm²

و بالتالي نقوم بحساب النتائج من خلال خانه ال Design كما بالشكل التالي

و بالتالي يوضح لنا ال As الخاصة بمقاومه العزوم و هيا 387 وبالتالي لحساب عدد الأسياخ نفرض أننا نريد أن نستخدم حديد قطر ١٦ مم بالتالي نحسب عدد الأسياخ من خلال :

10-Calculation Sheet :

في هذه الخانه يتم توضيح المدخلات التي تم أدخالها في التصميم و يتم أيضا توضيح ال N.A و هو عبارة عن السمك الفعال لمقاومه الضغط في القطاع كما بالشكل التالي :

11-Detailed Calculation :

في هذه الأيقونة يتم توضيح لنا كافه الخطوات الحسابية بالتفصيل للوصول للنتائج التي تم حسابها من قبل البر نامج في صورة شيت قابل للطباعة في أي وقت .

Part 5 Design The Short Column "Circular Column "

Introduction :

تستخدم غالبا الأعمدة المستديرة في حاله الرغبة في الحصول على شكل معماري أنيق عندما يكون العامود في منتصف المنزل أو في مكان يستخدم للمناسبات أو غير ها من المنشأت الخرسانية

Example : Using ultimate limit state design method design and draw a cross section details for R.C short columns given below . The Column are subjected to dead loads $P_{D.L} = 1500$ kN

and the live load $P_{L.L}$ = 700 kN . The characteristic strength of concrete F_{cu} = 25 N/mm^2 while the proof stress for steel f_y = 240 N/mm^2

Solution :

3-Prametar Tables :

في هذا الجدول نجد أو لا الجدول الأول يطلب منا معرفه هل أن العامود متصل من بدايته و نهايته أم لا بالتالي نضع علامه صح في الخانتين لتأكيد الاتصال للعامود في الخصائص كما في الشكل التالي :

Parameters	About X-X	About Y-Y
Braced (Y/N)		
End Condition Top	1:Fully fixed	1:Fully fixed
End Condition Bot	1:Fully fixed	1:Fully fixed
Eff. length factor ß	1	1

الجدول الثاني هو جدول الخاص بأبعاد العامود المراد تصميمه ، في أول خانة المطلوب قطر العامود و يتم حسابة كالتالي : P_{u.L} = 0.35 * F_{cu}* A_c + 0.67 * F_y* A_{sc}

و بالتالي للتخلص من مجهول في المعادلة لتكون في مجهول و احد فقط $A_{\rm sc}=0.01~A_{\rm s}$ و بالتالي فان المعادلة تكون كالتالي و بالتالي فان المعادلة تكون كالتالي 3300 * 0.01 $A_{\rm c}=0.35$

Solving ::
$$A_c = 318594.32 \ mm^2$$

$$318594.32 = \frac{\pi}{4} * D^2$$

D = 637 mm = 650 mm

الخانه الثانية ، يطلب فيها المسافة بين منتصف السيخ الى نهايه العامود الخرساني و غالبا تكون ب 30 mm

الخانة الثالثة ، يطلب هنا ارتفاع العامود علما أنه أقل ارتفاع للدور الواحد 3m بالتالي نأخذ ارتفاع العامود 3m

Lo (m)	3.0
--------	-----

أخيرا الجدول الخاص بخصائص المواد المستخدمة و هذا الجدول معطى في المثال :

fcu	(MPa)	25 💌
fy	(MPa)	240

4-Load Table :

جدول الأحمال المؤثرة على العامود ، في هذا الجدول ندخل الحمل الحي و الميت بعد تحويله لحاله ال Ultimate

Load	Ultimate Limit State Design Loads				^		
Case	Description	P (kN)	Mx top (kNm)	My top (kNm)	Mx bot (kNm)	My bot (kNm)	
1	DL+LL	3300					
							=
							•

5-Design Icon :

في هذه الخانه يتم توضيح النواتج من مساحه حديد التسليح و من حاله التحميل كما بالشكل التالي :

Design results for load case 1: (DL+LL)				
		Тор	Middle	Bottom
Ν	(kN)	3300.0	3300.0	3300.0
Mxadd	(kNm)	0.0	0.0	0.0
Myadd	(kNm)	0.0	0.0	0.0
Mx	(kNm)	0.0	0.0	0.0
My	(kNm)	0.0	0.0	0.0
Mmin	(kNm)	66.0	66.0	66.0
M'	(kNm)	66.0	66.0	66.0
Design axis Y-Y			Y-Y	Y-Y
Asc	(mm²)	1327	1327	1327
Asc/Ac (%) 0.40			0.40	0.40
Critical lo	ad case	Case 1 (DL+LL)		
Previo	us	Next Cri <u>t</u> ical		

عند الضغط على أيقونة Design Chart

يتم اظهار Chart تربط ما بين القوة المؤثرة على القطاع و ما بين العزوم الي يمكن أن تتولد على القطاع مع توضيح أقصى عزم متولد عند القطاع

6-Calculation Sheet :

هيا عبارة عن sheet توضح لنا عن كيفيه التوصل لكل النتائج و الحلول بشكل مفصل جدا وتكون جاهزة للطباعة في أي وقت كما بالشكل التالي :

1.101.101.101.11	Job Number		Sheet		
	Job Title				
Internet: http://www.prokon.com	Olient				
E-Mail : mail@prokon.com	Calcs by	Checked by	Date		
Example: Short colu	ımn with axial load			C12	
_				Č,	
Circular column design by PR	OKON. (CirCol Ver W3.0.07 - 02 Aug	2016)			
D 1 D 00110 1007					
Design code : BS8110 - 1997					
General design paran	neters:	74154645413415			
Given:					
d = 650 mm					
d' = 30 mm					
$f_{cu} = 25 \text{ MPa}$		t sen balden darb inder benobelde			
fy = 240 MPa					
-					
Therefore:					

7-Bending Schedule :

هيا الخانه التي توضح لنا شكل التسليح النهائي للقطاع كما يتضح لنا الأن :

١-يمكن اختيار القطر لحديد التسليح المراد استخدامه ، مع العلم أن أقل قطر هو ١٢ مم و أكبر قطر هو ٢٥ مم

و ليكن لنختار قطر ١٦ مم

Diameter of bars (mm) 16

و نختار أيضا عدد الأسياخ و ليكون سنختار ٨ أسياخ

Number of bars (Min. 6) 8 🚖

يكون هذا العدد أمن و اختيار صحيح في حاله أن الأيقونه Entered ليست باللون الأحمر كما بالشكل

Entered 1608

في الخانة التي بعدها يوضح هذا ارتفاع العامود كمناسيب الذي يبدأ من الصفر حتى يصل الى ٣ متر

Level at bottom	(m)	0
Level at top	(m)	3000

الأيقونه التالية هيا عبارة عن أيقونة توضح قطر ال Link Diameter وايضا المسافة بينهم

Link diameter and spacing R8@160

و بالتالي فان القطر هو ٨ مم و المسافة بينهم هيا ١٦٠ مم

أيضا يمكن اختيار شكل التسليح المرغوب من خلال وضح رقم أي شكل من الأشكال التالية LINK TYPES: Single spiral Spiral with single rectangular link (6+ main bars) في هذه الخانه

أخيرا يعطينا البرنامج قيمه لمساحة حديد التسليح المدخلة و تكون Entered و مساحه أقل حديد مطلوب و هو و بالتالي لو قل الأول عن الثاني يكون القطاع غير أمن

1

Link type number: 1-3 see below

Reinforcement (mm²)				
Entered Required Nominal				
1407 1327 1327				

أخيرا مع قائمه ال 3D عند الضغط على زر

يظهر لنا قطاع العامود بالتسليح بالشكل المجسم كما بالشكل التالي :

6	1
K	X
	\leq
	\ge

Ahmed Mansor | Prokon Lecture

Part 6

Design The Rectangular Columns

Introduction:

يتم تصميم الأعمدة في جميع المنشأت غالبا بالشكل المستطيل و يعتبر الشكل الأشهر و الأكثر استخداما لقطاعات الأعمدة

Choose Icon :

Example: Using ultimate limit state design method design and draw a cross section details for R.C short columns given below. The Column are subjected to dead loads PD.L = 1500 kN and the live load PL.L = 700 kN. The characteristic strength of concrete Fcu = 25 N/mm^2 while the proof stress for steel fy = 240 N/mm^2

Choose the Type Column According the State load:

وبتالي نختار نوع العامود من البرنامج طبقا لحاله التحميل الموجودة في المثال و بالتالي نجد في هذا المثال أن العامود هنا معرض لقوى axial load و بالتالي نختار الخيار التالي :

Choose Support in Start and End The Column :

في هذه الخانه يتم تحديد ال support التي توجد في بداية و نهايه العامود ، فنحن في المثال نريد أن يكون العامود Fixed من أسفل و من أعلى فنختار Fully Fixed كالتالي في الجدول :

Parameters	About X-X	About Y-Y
Braced (Y/N)		
End Condition Top	1:Fully fixed	1:Fully fixed
End Condition Bot	1:Fully fixed	1:Fully fixed
Eff. length factor ß	1	1

و بالتالي يكون شكل ال support في الشاشة كالتالي :

Properties Table:

للتصميم

الحالة الثانية : أننا نستخدم معادله الكود المصري في الأعمدة و نقوم بحساب المساحة منها كالتالي :

و بالتالي للتخلص من مجهول في المعادلة لتكون في مجهول واحد فقط Asc = 0.01 Ac و بالتالي فان المعادلة تكون كالتالي Ac + 0.67 * 240 * 0.01 Ac * 25 * 0.30 = 1000*3300

> Solving :: Ac = 318594.32 mm² b = 300 mm و بالتالي غالبا في الأعمدة نأخذ e بالتالي نقوم بحساب h من خلال العلاقة التالية : $h = Ac \setminus b = 318594 \setminus 300 = 1062 \text{ mm}$ 1100 mm نقربها لأقرب 50 مم بالتالي تصبح e بالتالي تكون القيم في ادخال القيم كالتالي : $h \qquad (\text{mm}) \qquad 1100$

نجد أن المطلوب في الخانتين التاليتين هما `dx و `dy و هما عباره عن المسافة من منتصف السيخ في العامود الى نهايه العامود الخرساني في الاتجاه الأفقي و الاتجاه الرأسي كما بالشكل :

تأخذ هذه القيمة غالبا ب 30 mm و بالتالي فأنها تكون

بعد ذلك يطلب منا ما يسمى ب Lo و هو ارتفاع الدور الواحد او (ارتفاع العامود) أن لم يكن معلوما فأننا نأخذ أقل ارتفاع للدور الواحد و هو 3m

أخيرا في هذا الجدول يطلب منا خصائص المواد المستخدمة وهيا معطاه في السؤال

fcu	(MPa)	25
fy	(MPa)	450

Load Table :

في هذا الجدول ندخل حالات التحميل المعرض لها القطاع و بالتالي فأننا سنفترض أن القطاع يؤثر عليه حاله تحميل واحده كما سنقوم حسابها بالشكل التالي بدلا من كونها حالتين :

P.u.L = 1.5 * (700 + 1500) = 3300 kN

Load	Description		Ultimate	e Limit State De	sign Loads		
case	Description	P (kN)	Mx top (kNm)	My top (kNm)	Mx bot (kNm)	My bot (kNm)	
1	DL+LL	3300					_
							-

Design Icon :

في هذه الأيقونه يتم توضيح النواتج و الحلول التصميمة للقطاع بعد ادخال المدخلات كامله و تنقسم هذه الأيقونه الى ٣ اقسام سنتعرف على كل قسم على حدى كالتالي : Design :

في هذه الأيقونه يتم توضيح الأحمال المؤثرة على القطاع الخرساني و ايجاد مساحه حديد التسليح طبقا للتصميم على أعلى حاله تحميل ودر اسة النسبة بين مساحه حديد التسليح الى مساحه القطاع الخرساني ككل :

Design result	DL +LL)			
		Тор	Middle	Bottom
N	(kN)	3300.0	3300.0	3300.0
Mxadd	(kNm)	0.0	0.0	0.0
Myadd	(kNm)	0.0	0.0	0.0
Mx	(kNm)	0.0	0.0	0.0
My	(kNm)	0.0	0.0	0.0
Mmin	(kNm)	49.5	49.5	49.5
M'y (kNm)		49.5	49.5	49.5
Design axis	s	Y-Y	Y-Y	Y-Y
Asc	(mm²)	1322	1322	1322
Asc/Ac (%))	0.40	0.40	0.40
Asc X-X ax	is.	1322	1322	1322
Critical loa	d case	Case 1 (DL+LL)		
Critical load case for other(X-X) axis		Ca	se 1 (DL+	LL)
Max Asc X-	X axis(r	1322	1322	1322

كما نستطيع تغير التصميم لحالات التحميل المختلفة في حاله وجود أكثر من حاله تحميل على القطاع من خلال الضغط على أحد الأزرار التالية :

حيث أن Next يعني حاله التحميل التالية و Previous يعني حاله التحميل السابقة و Critical يعني التصميم على أقصى حاله تحميل للقطاع Design Chart X-X :

توضح هذه الأيقونه العلاقة بين ال Axial load و بين ال Bending Moment على القطاع في صورة Chart و عند تحريك السهم على أي منطقه في هذا ال Chart توضح لنا قيمه ال Axial و ال Moment المقابل له كالتالي :

Design Chart Y-Y :

هيا نفس خصائص الأيقونه السابقة الا أنها تختلف عنها في جزء انها في تصميم القطاع في المحور Y-Y للقطاع و ليس X-Xو تكون كالتالي :

Clacsheets :

في هذه الأيقونه يتم توضيح كل الحلول التصميمة للقطاع على صورة Sheet قابل للطباعة من خلال الضغط على زر و تكون كالتالي :

Bending Schedule :

		Þ					F
	Input	Design	Calcshe	ets Bending Schedule			
 	A5	m	mm	Column ContinousSave BS info in data file	Starter bars onlyDouble links at kink	Recalculate BS data defaults	Generate Schedule
Ske	etch size	Leve	els in		Schedule		

في هذه الأيقونه يتم توضيح التسليح و كيفيته طبقا للحل الناتج من البرنامج للتعرف عليها كالتالي :

توضح هذه الخانه قطر حديد التسليح الموجود في أركان العامود و توضح أيضا عدد الأسياخ حول المحور الأفقي لكنها حول المحور الأفقي لكنها حول المحور الرأسي تمثل ٤ أسياخ ، و يمكن أيضا تغير القطر للحديد حسب الرغبة و يقوم البرنامج تلقائيا بحساب العدد المحور الرأسي تمثل ٤ أسياخ ، و يمكن أيضا تغير المطلوب .

Diameter	(mm)	32
No. of middle bars about Y-Y		2

في هذه الخانه يوضح قطر الحديد التسليح الرئيسي للعامود و يكون أيضا قابل للتعديل عند الرغبة في ذلك و يقوم البرنامج تلقائيا بحساب العدد المطلوب لاستيفاء هذا القطر في التسليح .

Level at bottom (m	nm)	0
Level at top (m	nm)	3000

توضح هذه الخانه ارتفاع العامود لكن كمناسيب فيبدأ هنا ارتفاع العامود من الصفر و ينتهي ب mm 3000 mm

Link diameter and spacing R8@140

في هذه الخانه يوضح ان الكانات في العامود تكون قطر ٨ مم لكل ١٤٠ مم في العامود

Link type number (see 1-4 below) 3

فى هذه الخانه يتم اختيار شكل تسليح الكانات بمجرد وضع رقم أحد أشكال التسليح التالية في الخانه السابقة :

Ahmed Mansor [PROKON LECTURES HAND BOOK]

About	Entered	Required	Nominal
X-X	2865	1322	1320
Y-Y	1709	1322	1320

يوضح هذا الجدول قيمه مساحه حديد التسليح المدخلة و هيا ال Entered و يجب أن تكون هذه القيمة دائما أكبر من مساحه حديد التسليح المطلوبة و هيا ال Required و في حاله كون أي خانه لل Enteredباللون الأحمر فهذا يعني أن التسليح غير أمن و يجب اعاده زياده عدد الأسياخ أو زياده قطر السيخ

تعنى أنه يوجد 4 اسياخ قطر mm 20 و هكذا يقرأ التسليح في البرنامج

21R8

تعني أنه يوجد 21 كانه قطر mm 8 و قد تم استنتاج هذا العدد بقسمه ارتفاع العامود وهو 140\3000 و بالتالي كانت 21 أخيرا يمكننا أيضا من خلال البرنامج التعرف على شكل القطاع بشكل BDمن خلال الضغط على زر ال 3D

Part 7

Calculation The Properties of Section

Introduction:

يجب على كل مهندس قبل در اسة أي مشكله تخص القطاعات باختلاف أنواعها أو قواعد تصميم تلك القطاعات ، أن يبدأ أولا بالتعرف على خصائص هذا القطاع و طبيعته من كافة الجوانب الإنشائية و عليه فأننا سنقوم من خلال هذا الفصل بدر اسة و حساب هذه الخواص بأستخدام برنامج بروكون الذي يتيح لنا هذا بسهولة جدا .

Choose Icon :

توجد أيقونة حساب خصائص القطاع في برنامج بروكون في قائمه General تحديدا أيقونة ProSec

Section Database :

بعد فتح النافذة نجد في أسفل النافذة زر بعنوان Section Database هذا الزر عند الضغط عليه يوضح لنا قائمه توضح لنا فلن النا بعض القطاعات الموجودة مسبقا في قاعده برنامج البروكون و عند اختيار أي قطاع طبقا للمادة المصنع منها مثل (الحديد – الخرسانه – الخشب) و عند اختيار أي قطاع فأن البرنامج يقوم بحساب خصائصه بشكل مباشر و تكون القائمة كالتالي :

		Select Se	ection from data base	×
Steel	Concrete	Timber		
hr			IPE-AA 100	
			IPE 100	
-	-		IPE-AA 120	
			IPE-0A 140	
a			IPE 140	
			TPE-44 160	
			IPE 160	
I			IPE-AA 180	
1.5			IPE 180	
_			IPE-AA 200	
	- Million	din ba	IPE 200	
			203x133x25	=
line-			203x133x30	
-				
			254x146x31	
line -	line in		254x146x37	
0			204X 140X40	
	-		305x102x25	
			305x102x28	
			305x102x33	
			305x165x40	
			305x165x46	
1000	line in the		305x165x54	
			356y 171y 45	
	10.00		356x171x51	
			356x171x57	
S.			356x171x67	
line.	line in		406x140x39	
	C		406x140x46	
line.	0		406x178x54	
	•		405x178x60	
	~		406x178x67	•
Ca	ncel			

Settings :

نلاحظ أيضا وجود زر أخر بجانب زر ال Section Database هو زر ال Settings و يكون هذا الزر بالشكل التالي :

```
Settings Section Database
```

عند الضغط عليه فأننا يظهر لنا جدول بهذا الشكل :

	Settings	? 🗙
Title		
Rotation Angle	0	Clockwise positive
Poisson's Ratio	0.3	0.0 Minimum, 0.5 Maximum
Number of equations	5000	200 Minimum, 30000 Maximum
Units	mm 💌	Optional
		Ōĸ

في هذا الجدول نستطيع تغير الخصائص المستخدمة للمادة المصنوع منها القطاع مثل Poisson`s Ratio و أيضا التحكم في وحدات القياس المراد أدخال أبعاد القطاع بها .

و لتعلم كيف ندخل أي قطاع خارجي على البرنامج لحساب خصائصه نتبع المثال التالي :

Example : Calculate The Properties of the Section, "Material Used : Concrete "?

200.0

أولا : نقوم برسم الشكل المراد حساب الخصائص له كإحداثيات :

نضع العلامة الكودية الخاصة بكيفيه تحرك الإحداثيات و هيا ال + كما بالشكل :

و تعنى هذه الأشارة أننا نريد أن نتحرك في شبكه الإحداثيات بشكلها الطبيعي بمعنى (أن الرقم الموجب في المحور X يكون الحركة في اتجاه اليمين و العكس عند الأشارة السالبة) و في محور Y ان الرقم الموجب يعنى الارتفاع لأعلى و أن الرقم السالب يعنى أننا ننزل لأسفل .

بالتالى فأننا ندخل الإحداثيات كالتالى :

الإحداثي الأفقي :

Code	X/Radius	Y/Angle
+		
	100	

0.000

الإحداثي الأفقي :

Code	X/Radius	Y/Angle
+		
	100	
		100
	50	
		50
	-200	

200.0

الإحداثي الرأسي :

Code	X/Radius	Y/Angle
+		
	100	
		100
	50	
		50
	-200	
		-50

200.0

: الإحداثي الأفقي Code X/Radius Y/Angle + 100 100 50 50 -200 -50 50 50

و بالتالي قد تم تمثيل القطاع المراد حساب خصائص القطاع له .

للحصول على النتائج بعد ادخال احداثيات القطاع نذهب لقائمه Properties

1-Properties :

The second second						
<u>F</u> ile	Input	Properties	Shear and Torsion	<u>C</u> alcsheet	Help	

في هذه القائمة يتم توضيح جميع خصائص القطاع المتاحة على قائمه جدول بالصورة التالية :

А	mm ²	20.000E3
Ixx	mm ⁴	38.542E6
Іуу	mm ⁴	41.667E6
Ixy	mm ⁴	0.0000
Iuu	mm ⁴	41.667E6
Ivv	mm ⁴	38.542E6
Ir	mm ⁴	80.208E6
Ang	deg	90.000°
Zxx(T)	mm ³	616.67E3
Zxx(B)	mm ³	440.48E3
Zyy(L)	mm ³	416.67E3
Zyy(R)	mm ³	416.67E3
Zuu	mm ³	416.67E3
Zvv	mm ³	440.48E3
Zplx	mm ³	749.97E3
Zply	mm ³	750.00E3
Yc	mm	87.500
Xc	mm	100.00
rx	mm	43.899
ry	mm	45.644
ru	mm	45.644
rv	mm	43.899
Xpl	mm	100.00
Ypl	mm	99.994
Perim.	mm	700.00
J	mm ⁴	36.669E6
Zt	mm ³	153.21E3
Cw	mm ⁶	16.772E9
A-shear	mm ²	12.224E3
Bx		11.567
Vr		333.33E-3
Г		352.38E-3
jx	mm	0.0000
jy	mm	11.877

من الملاحظات الهامة عند قراءة النواتج فأن رمز E9 على سبيل المثال يعني أن الرقم مضروبا في عشرة أس ٩ و بالتالي فأن أي رقم يأتي بعد حرف ال E في النواتج فهو يعني الناتج مضروبا في عشرة مرفوعا لأس هذا الرقم .

نلاحظ أيضا في الجانب الأيمن من الشاشة أن البرنامج قد أظهر مع الحل أيضا مكان ال CG للقطاع أو Center نلاحظ أيضا في الجانب الأيمن من الشاشة أن البرنامج قد أظهر مع الحل أيضا مكان ال

في هذه القائمة يتم أخراج أقصى المناطق للقطاع المدخل التي يتعرض فيها لل Shear Stress طبقا لمحور x and y و كذلك عزوم الالتواء Torsion و في حاله أخيرة و هيا تأثير عزم الالتواء مع قوة ال Shear Stress و تكون الشاشة مقسمه لأربع أقسام كما بالصورة التالية كما نلاحظ أن البرنامج قد أعطى رسما توضيحيا لأشكال القوى المؤثرة في حال وجودها على القطاع :

لدراسة ورؤيه كل نافذة على حدى نختار أحد الأيقونات التالية حسب اختيار النافذة المراد دراستها فكل منظار مما يلي يوضح الشاشة التي توجد بداخلة

على سبيل المثال لو أخترنا المنظار رقم ١ و هو كالتالى :

يتم توضيح و تكبير الربع الأول من الشاشة و هو كالتالي :

3-Calcsheet :

 Eile
 Input
 Properties
 Shear and Torsion
 Calcsheet
 Help

في هذه القائمة يتم توضيح جميع الحلول الخاصة بالقطاع على صورة Sheet قابل للطباعة و التعديل في أي وقت كالتالي

Part 8

Analysis Stress\Strain in Prokon

Introduction:

من الدر اسات الهامة جدا عند تصميم أي منشأ هيا التعرف على قيمه و طبيعة الإجهادات المؤثرة عليه و بالتالي مقاومه هذه الإجهادات من خلال التسليح اللازم في المنشأت الخرسانية و ال Connection اللازمة في منشأت ال steel و هذا هو أساس التصميم أننا نحصل على أبعاد القطاعات و ووسيله الربط اللازمة لمقاومه الأحمال التي تجعل القطاع غير أمن.

ويتيح لنا برنامج بروكون هذه الخاصية ضمن وظائفه من خلال الأيقونه التالية الموجودة ضمن قائمه Analysis

Example 1 : Analysis The Below Bridge :

Given :

1-lift support = Roller Support , Right Support = Hinge Support

2- Properties the Concrete " Fcu = 25, Passion ratio = 0.2 "

Input Dimension :

في هذا الجدول نقوم بإدخال الأبعاد الخاصة بهذا الكوبري كإحداثيات كالتالي في هذا الجدول

NODE	S			
Mat. No	X (m)	Y (m)	Bulge (m)	
				=
				-

<mark>أولا</mark> : يتم ترقيم الشكل المرسوم في خانه الترقيم برقم ١ و هذا يدل على ان كل النقاط المدخلة هيا لهذا الشكل فقط

NODES				
Mat. No	X (m)	Y (m)	Bulge (m)	
1				

ثانيا : ندخل إحداثيات كل نقاط الشكل و ندخلها نقطه بنقطة كالتالي :

Point 1 = (3, 0)

NODE	s			^
Mat. No	X (m)	Y (m)	Bulge (m)	
1				
	3	0		

Point 2 = (-0.5, 4)

NODES				
Mat.	Х	Y	Bulge	
No	(m)	(m)	(m)	
1				
	3	0		
	-0.5	4		

لرؤيه الشكل المرسوم بعد كل نقطه يتم ادخالها نضغط على زر Enter في الكيبورد

NODE	S			1
Mat. No	X (m)	Y (m)	Bulge (m)	
1				
	3	0		
	-0.5	4		
	-15	0		

Point 3 = (-15, 0)

Point 4 = (-0.5, -4)

NODES				
Mat. No	X (m)	Y (m)	Bulge (m)	
1				
	3	0		
	-0.5	4		
	-15	0		
	-0.5	-4		

نلاحظ بعد ادخال الإحداثيات أنه تكون لدينا شكل مصمت من الخرسانه كما يلى :

و لنقوم بعمل نصف الدائرة في منتصف الكوبري كما في المثال

فأننا نحدد المسافة المراد " تفريغها " و بالتالي فأننا من خلال أبعاد هذا الكوبري فأننا نقوم بحساب هذه المسافة فعلى سبيل المثال فأن عرض الكوبري من أعلي = ١٥+٥،٠+٥،٠ = ١٦ متر ،، حيث أن عرض القاعدتين للكوبري = ٣+٣ = ٦ متر وبالتالي فانه ١٦ – ٦ = ١٠ متر و تكون على قيمه الإحداثي x كما بالشكل التالي :

NODE	S			
Mat. No	X (m)	Y (m)	Bulge (m)	
1				
	3			
	-0.5	4		
	-15			
	-0.5	-4		
	3			
	10			

لعمل التفريغ : فأننا من خلال الأبعاد نعلم أن الارتفاع الكلي = ٤ متر و بالتالي نقوم بطرح ٢ متر منه و بالتالي فان ارتفاع التفريغ = ٢ متر

و يكتب التفريغ للشكل في خانه Bulge و يكون سالب في حالة التفريغ و موجب في حالة الزيادة

NODE	S			
Mat. No	X (m)	Y (m)	Bulge (m)	
1				
	3			
	-0.5	4		
	-15			
	-0.5	-4		
	3			
	10		-2	

و بالتالي فأننا انتهينا من ادخال احداثيات الكوبري بهذا الشكل النهائي

Input Supports :

في هذا الجدول نبدأ في ادخال أنواع ال Supports الخاصة بالكوبري الخرساني بالرجوع للمثال نجد أن نوع ال المطلوبة هيا :

1-lift support = Roller Support, Right Support = Hinge Support

SUPPORTS				
Nodes	vv	Presc. Displ.		
Noues	~'	X(m)	Y(m)	
	1			

نقوم بإدخال هذه الأنواع في هذا الجدول كالتالي :

ال Nodes و هيا عبارة عن الأرقام التي تمثل بداية ونهاية ال support على سبيل المثال لو أدخلنا ال Support الأيمن

نجد أن بداية و نهايه ال Support عند النقاط 6-5

و بالتالي لأننا نريد أن يكون ال Support الأيمن Hinge Support فأننا ندخله برمز XY بمعنى انه مقاوم لقوة في اتجاه XY وهذا هو ال Hinge Support

يكون شكل ال Support بهذا الشكل

و في حاله الأيسر نقوم بنفس الخطوات لكن باختلاف المطاليب و بالتالي تكون المدخلات و المخرجات بهذا الشكل

SUPPORTS					
Nodes	XY	Presc. X(m)	Displ.	Ī	
5-6	XY	Aftity	1 (11)	1	
1-2	Y				
				Ē	

الشكل النهائي للكوبري بعد أدخال ال Support

Input Material Properties :

يتم في هذا الجدول ادخال خصائص المادة المستخدمة في المنشأ المر اد تحليله

_			
⊏ V/m2)	Poisson	Density (kN/m3)	
			-
	J/m2)	V/m2) POISSON	I/m2) Poisson (kN/m3)

طبقا للكود المصري فأن Modulus of Elasticity للخرسانة يساوي

 $E = 4400 \sqrt{Fcu}$ $E = 4400 \sqrt{25}$ $E = 22000 \text{ N}/mm^2$ $E = 22*10^6 \text{ kN}/m^2$

Poisson = 0.2

Density = 25 kN m^3

MATERIAL PROPERTIES					•
No	Thick (m)	E (kN/m2)	Poisson	Density (kN/m3)	
1	1	22E6	0.2	25	
					10

Input The Load :

في هذا الجدول نقوم بإدخال الأحمال المؤثرة على الكوبري الخرساني

		_		LOADS				•
Nodes	X Y	W Left (kN/m)	W Right (kN/m)	a (m)	b (m)	P (kN)	a (m)	
								=
								•

لكن قبل هذه العملية يجب أو لا أن نفهم كيف يتم توزيع الأحمال على الكباري الخرسانية كالتالي و ماهيا تلك الأحمال

لو علمنا أن هذا هو المسقط الرأسي للكوبري ال Plan بالأبعاد الخاصة به فهو يتكون هنا من عدة أجزاء

" الحارة الرئيسة " I-Main lane

في هذه الحارة هيا من الحارات المخصصة للمركبات ، فطبقا للكود نفترض أنه على هذه الحارة مركبة وزنها 600kN موزعه على 6 عجلات بالتالي وزن العجلة الواحدة 100 kN أضافة لحمل أضافي 5kN\m² يوزع على باقي الحارة أمام و خلف المركبات . "حارة فرعيه " : 2-secondary lane

في هذه الحارة نفترض أنه لدينا مركبه وزنها 300kN موزعه على 6 عجلات وزن العجلة الواحدة 50kN\m² بالإضافة الى حمل موزع أمام و خلف المركبات مقداره 3kN\m² ، و في باقي الكوبري حمل مقداره 3kN\m² في أماكن سير المشاة و هو يمثل الحمل الحي .

بالتالي طبقا للمعلومات السابقة نقوم بحساب الأحمال التي يجب ادخالها :

1-Main lane:

600 + 2 (5 * 13.5) = 735 kN

2-Secondary lane :

300 + 2 (3 * 13.5) = 381 kN

الحارات الخاصة بالمشاة

2 * (3 * 15 * 1.5) = 90 kN

وزن الكوبري نفسه

Thickness of Bridge = $(15 \setminus 15) = 1$ m

 $W_s = (1*25) + 1.5 + 3 = 29.5 \text{ kN}/\text{m}^2$

Total load = 735 + 381 + 90 + 29.5 = 1235.5 kN

 $1235.5 \setminus 15 = 82.37 \text{ kN/m}$

و بالتالى فأن الأحمال على هذا الكوبري تكون

	_			LOADS	_	_		1
Nodes	X Y	W Left (kN/m)	W Right (kN/m)	a (m)	b (m)	P (kN)	a (m)	
3-4	Y	82.37	82.37	15	15			
								-

Analyse Icon :

في هذه الأيقونة يتم ايضاح شكل التقسيم الخاص بالكوبري طبقا لاختلاف الاحمال المتوفرة والتي يتعامل معه البرنامج

View Icon :

هذه الأيقونه أول ايقونات أظهار الحل طبقا للأحمال المدخلة و اظهار الإجهادات

Deflection:

MAX. DEFLECTIONS X: 0.157mm @ x=0.000m, y=0.000m Y: -0.191mm @ x=-5.000m, y=3.000m

في هذه الأيقونه يتم توضيح ال Deflection للكوبري الخرساني طبقا للأحمال المدخلة و الناتجة من الإجهادات

Maximum Stress :

MAXIMUM PRINCIPAL STRESSES (Tension = +) kPa Smax= 414kPa @ x=-5.000m, y=2.000m Smin= -344kPa @ x=0.000m, y=0.000m

Minimum Stress :

```
MINIMUM PRINCIPAL STRESSES (Compression = -) kPa
Smax= 41.8kPa @ x=-13.000m, y=0.000m Smin= -1.03E3kPa @ x=-10.000m, y=0.000m
```


Von Mises Stress :

Part 9

Design Hollow Section Connection

Introduction:

يستخدم هذا النوع من ال Connection في منشأت الأستيل في حالة الرغبة في اضافه شكل معماري مميز و كذلك في حالة اتساع المنشأ فيجب في هذه الحالة أن تكون ال Connection ذات مسافات صغيره عن بعضها و أيضا متعددة

و أمثله عليها في الحياه العملية كالتالي :

و نقوم بتصميم هذا ال Connection من خلال برنامج بروكون من خلال الأيقونه التالية :

Example : Design the K-joint Connection using Given Data :

E = 206 Gpa

Fy For all section = 300 Mpa

Input Table :

هذا الجدول مقسم الى عدة أقسام نبدأ أو لا بالجزء الخاص بإدخال القوى المؤثرة على القطاعات و التي تم حسابها مسبقا يدويا أو بأستخدام البرامج اللازمة لذلك و كما في المثال فأن هذه القوى تدخل في الجدول كالتالي :

ULS - N0:chord	(kN)	50
ULS - N1:left bracing	(kN)	70
ULS - N2:right bracing	(kN)	65
ULS - N3:centre bracing	(kN)	0

الجزء الثاني و فيه نبدأ بإدخال الزاويا لكل فرع لل Connection لتحديد طبيعة شكله كما في المثال التالي :

Angle left bracing - Ø1 (°)	30
Angle right bracing - Ø2 (°)	30
Angle centre bracing - Ø3 (°)	0

الجزء الثالث و فيه نحدد المسافة التي تفصل كل فرع لل Connection عن الفرع الأخر و هيا في المثال ٥ مم

Gap g (mm) 5

في الجزء الرابع من هذا الجدول نقوم بإدخال خصائص الأستيل المستخدم و هيا جميعها معطاه كما يلي

fy:chord	(MPa)	300
fy:left bracing	(MPa)	300
fy:right bracing	(MPa)	300
fy:centre bracing	(MPa)	300
Es	(GPa)	206
Partial safety factor YMj		1 💌

Choose The section :

في هذا الجدول نقوم باختيار أنواع القطاعات المستخدمة من خلال استخدام الجداول الجاهزة في البرنامج من الزر التالي :

Section Database

عند الضغط عليه تظهر لنا النافذة الخاصبة بالقطاعات المراد اختيارها حسب الشكل

و هكذا نختار باقي القطاعات

Chord:	203x133x25	I1
Bracing Left:	60.3x3.0	01
Bracing Right	88.9x4.0	01

بعد ادخال المدخلات نذهب لأيقونة ال Calculation Sheet كما في التالي

في الأيقونه نلاحظ أنه يظهر هنا النتائج و الخطوات للحل و بعد كل ناتج يقوم بتأكيد صحة الحل من خلال كلمه OK باللون الأخضر كما بالشكل حتى نصل في النهاية لتأكيد من البرنامج كما في الشكل أن ال Connection Safe

Part 10

Bolts Group Design

Introduction:

نقوم في هذا الجزء بالتأكد من أن مجموعة المسامير المستخدمة لعمل ال Connection أمنه و تتحمل القوى على القطاع من خلال الأيقونه التالية في برنامج Prokon

Example : Check The Bolts Group is safe ?

1-Bolts Type :

HSFG Bolts "High strength friction grip bolts"

3-Bolts Grade :

Table	(6.1)	Nominal	Values	of	Yield	Stress	Fyb	and	Ultimate
		Tensile S	trength	Fub	for Bo	olts			

		_					
Bolt grade	4.6	4.8	5.6	5.8	6.8	8.8	10.9
F_{yb} (t/cm ²)	2.4	3.2	3.0	4.0	4.8	6.4	9.0
F _{ub} (t/cm²)	4.0	4.0	5.0	5.0	<mark>6.0</mark>	<mark>8.</mark> 0	10.0

4-Bolts Diameter :

16 mm

5-Shear Planes :

6-Coulmn & Row of Bolts :

Columns of Bolts	nc	2
Rows of Bolts	nr	4

7-Column & Row :

Column Spacing	(mm)	a1	50
Row Spacing	(mm)	a2	50

8-ULS Force :

From Example F = 60 kN

9- The Force Distance From Center line the plate :

Force Horizontal Offset (mm)	х	95	
Force Vertical Offset (mm)	у	120	

و بهذا يكون انتهينا من مدخلات التصميم نبدأ في اظهار النواتج من قائمه Design

في هذه القائمة نلاحظ أنه يتم حساب قدرة تحمل المسمار الواحد و القوة على جميع المسامير و هل تستطيع هذه المجموعة من المسامير تحمل هذه القوة أم لا :

The applied ULS force is : 60 kN

The capacity of the bolt group is : 96.78 kN

This configuration requires 16 mm bolts for a capacity of 96.78 kN

بالنظر للنواتج نرى أن القوة المطبقة على المجموعة هيا 60kN و ان البرنامج قد حسب قدرة تحمل المجموعة كاملة و هيا 96.78kN و بالتالي فأن قدرة التحمل للمجموعة أكبر من القوة المطبقة على المجموعة بالتالي فان ال Connection

في الأيقونه التالية و هيا أيقونة Calculation Sheet فأننا نحصل على جدول يوضح لنا المدخلات و أيضا الخطوات التي تم من خلالها حساب قدرة تحمل المجموعة الكاملة من المسامير كالتالي :

The capacity of a single bolt is :

$$\phi_b = 0.67$$

$$A_b = 201.062 \,\mathrm{mm}^2$$

$$f_u = 500 \,\mathrm{MPa}$$

$$m = 1$$

$$V_r = \frac{0.75 \cdot 0.60 \cdot \phi_b \ m \cdot A_b \cdot f_u}{1000} = 30.310 \,\mathrm{kN}$$

	Bolt Forces Under Applied ULS Load (kN)												
Column	Row	X Component	Y Component	Force	Angle								
1	1	14.25	2.75	14.51	10.9								
2	1	14.25	12.25	18.79	40.7								
1	2	4.75	2.75	5.49	30.1								
2	2	4.75	12.25	13.14	68.8								
1	3	-4.75	2.75	5.49	149.9								
2	3	-4.75	12.25	13.14	111.2								
1	4	-14.25	2.75	14.51	169.1								
2	4	-14.25	12.25	18.79	139.3								

و أيضا يتم إيضاح القوة الموزعة على كل مسمار على حدى كالتالي :

Part 13

Design Retaining Wall

"Reservoir wall"

Introduction:

في هذا الجزء سوف نقوم بتصميم نوع هام من انواع حوائط السند و هيا الحوائط التي تستخدم لتخزين المياه

Choose Icon :

Example: Design the Following Reservoir Wall Using Prokon?

Given Data:

- 1-H1 (Wall Height) = 3 m
- 2-H2 (Soil Height) = 0.67 m
- 3-Hw,H3 (Water Height) = 2.6 m
- 4-D (Wall Length) = 1.85 m
- 5-C (Wall Thickness in Bottom) = 0.4 m
- 6-At, Ab (Wall Thickness in Top) = 0.25 m
- 7- Cover: Wall, Base = 50 mm
- 8-Soil Friction = 25°

- 9-Density Concrete = 25kN/m3
- 10-Density Soil = 18 kN / m3
- 11- Fcu = 25 Mpa
- 12-Fy = 360 Mpa
- 13-Safty Factor Overturning, Sliding = 1.5
- 14- Ultimate D.L Factor = 1.4
- 15-Ultimate L.L Factor = 1.6
- 16-Pmax = 400 kpa
- 17-Soil Poisson = 0.5
- 18- Slide \setminus Overturning = 1

بعد الانتهاء من أدخال ال Input نرى في الأسفل هذه القائمة

Title Reservoir wall										
Seismic Analysis										
\checkmark Apply Active pressure on back of shear key for sliding										
Hor Accel. (g)	Design Values									
Vert Accel. (g)	Ка	0.406								
Indude LL's	Кр	2.464								
Allow Seepage	Ka incl. seismic effect	0.000								
Ontimiza	Kp incl. seismic effect	0.000								
Optimize	Base Friction constant	0.466								
Select B Select D	[T]riang/[U]niform pressure	Т								
Selec <u>t</u> F	Uniform pressure coefficient	0.65								
Theory Coulomb (Rec	commended) 🔽 Syn	nbols								
Wall Type Cantilever	Input	errors								
		-								

في خالة ال Title يتم أدخال عنوان " اسم للمشروع "

نختار ال Seismic Analysis في حاله الرغبة في ادخال تأثير الزلازل في الاعتبار عند التصميم

و عند الرغبة في اضافتها في البرنامج يطلب من المستخدم اضافة الترددات الخاصه بدراسة الزلزال التي يجب أن يصمم عليها طبقا لدراسات المنطقة .

في حاله اختيار User defined design Value في هذه الحالة يقوم المستخدم بتعريف القيم التصميمة في حاله أن القيم التي يتم التصميم بها في البرنامج غير تابعه للكود الخاص به أو أن الكود غير موجود بالبرنامج

في حاله الرغبة في وضع حالة التسرب في الاعتبار خلال التصميم فأننا نختار Allow Seepage

نلاحظ في خانــة ال Theory " النظرية المستخدمة " في عمليه التصميم وهما نوعين من النظريات

1-Coulomb " Recommended "

نظرية كولومب " و يقترحها البرنامج على أنها نظريه مستحسنه الاستخدام " لذلك سنختار هذه النظرية في التصميم التي تنص على انه يتم تطبيقها في حالة أخذ في الأعتبار خشونة الحائط الساند و تستخدم هذه النظرية في كل انواع التربة المتماسكة و غير المتماسكة .

Theory Coulomb (Recommended)

2-Rankine "Not recommended"

نظرية رانكن " و يقترحها البرنامج على انها نظرية غير مستحسنه الاستخدام " هيا أكثر النظريات شيوعا و استخداما و قد و ضعت بفرض أن التربة ممتدة أفقيا امتداد لانهائيا ومتجانسة و جافة و غير متماسكة و ان سطح الأرض مستوى أفقيا أو مائلا و ان الحائط يتحرك بمقدار يؤدي بالتربة الى حالة الاتزان اللدن و سطحه أملس وقد اتسعت هذه النظرية ليشمل

Theory	Rankine (Not recommended)	F
--------	---------------------------	---

يتم الظهور في أسفل شاشه المدخلات مربع خالي و هو عبارة ال Input Error و فيه يذكر كل الأخطاء في المدخلات في حالة و حالة و جودها كالتالي :

Design Diagram :

Į.						
Eile	Input	<u>D</u> esign diagram	Moments & Reinforcement	<u>C</u> alcsheets	Bending Schedule	<u>H</u> elp

في هذه الخانه يتم توضيح الأبعاد المدخلة على الرسم ، الكود المستخدم ، و كذلك نوع النظرية المستخدمة في التصميم كما يوضح في النتائج ال Diagram الخاص بالإجهادات التي تؤثر على قاعده الخزان نتيجه المياة أعلاه

ما يهمنا بشكل كبير في هذه الأيقونه عده أمور :

١-أن ال SF Slip = 1.80 و هو معامل الأمان للأنز لاق أعلى من 1.5 و هو معامل الأمان المدخل في المدخلات و الذي ي يشترط ان لا يقل عنه .

65.7 اليضا ال Diagram الخاص بتوضيح الضغوطات " الأجهادات " على قاعده الخزان و هيا أقصى قيمه لها kPa وهذه القيمة أقل من kPa و هيا القيمة المدخلة التي يشترط ان لا يزيد عنها .

Summary of design results										
Position	Moment	Ast	Asc							
Wall maximum	-8	105	0							
Base back	-16	142	0							
Base front maximum	1	1	0							

٢-جدول النتائج و يكون يمين الشاشة و يكون كالتالي :

و أيضا التسليح اللازم Moment يوضح هذا الجدول ٣ أماكن لدر اسة العزوم كما يوضح العزم عنها من خلال أيقونة Moment و أيضا التسليح اللازم لهذا العزم من خلال ال Asc و كذلك مساحه الخرسانه اللازمة لمقاومه هذا العزم التي دائما ما تكون مساوية للصغر Asc لهذا العزم من خلال ال لأنه الخرسانه يلزمها التسليح لمقاومه العزوم و لا تقاومها من نفسها فقط

Moment & Reinforcement :

Þ							
File	Input	<u>D</u> esign diagram	Moments & <u>R</u> einforcement	<u>C</u> alcsheets	Bending Schedule	<u>H</u> elp	

فى هذه الأيقونه يتم توضيح ٤ من ال Chart الخاصبه بالنتائج لدراسة الحالات المختلفة لهذا الجدار الساند كالتالي :

في هذا ال Chart يتم الربط بين العلاقة الخاصة بارتفاع حائط السند و حساب العزوم عند أي ارتفاع من خلال تحريك السهم للارتفاع المطلوب فيتم أعطاء قيمه العزم المقابلة لها في الأتجاه الأخر.

كما نلاحظ أن ال Chart يعطينا على اليمين في الأعلى قيمه أقصى عزوم موجوده و هيا

1.21 m عند ارتفاع 7.675 kN.m

في هذا ال Chart يتم توضيح العلاقة بين الارتفاع الخاص بحائط السند و كذلك حديد التسليح المقابل لهذا الارتفاع نتيجه العزوم عند هذا الارتفاع ، كذلك يتم توضيح أقصى قيمه للتسليح أعلى يمين ال Chart و هيا

2.60 m عند أرتفاع 325 mm²

في هذا ال Chart توضح العلاقة بين القاعدة الخاصه بحائط السند و بين العزم عند المسافات المختلفة لهذه القاعدة ، فيعطى العزم المقابل عند أي مسافة فيها .

كما انه يوضح أن أقصى عزم في القاعدة الخاصة بحائط السند = 15.63kN.m عند 0.126 m

في هذا ال Chart يتم توضيح حديد التسليح للازم في كل منطقه في القاعدة الخاصة بحائط السند و يوضح أقصى قيمه لحديد التسليح فيه و هيا = 142.2 mm² عند مسافه 0.206 m

Clacsheets :

يتم في هذه القائمة توضيح النتائج على هيئه Sheet قابل للطباعة و تكون النتائج فيه بالتفصيل جدا

المدخلات التي تم ادخالها

Wall Dimensions						Unfactored Live Loads		General Parameters			Design Parameters			
H1	(m)	3	С	(m)	0.4	W	(kN/m²)		Soil frict	φ (°)	25	SF Overt.		1.5
H2	(m)	0.67	F	(m)		P	(kN)		Fill slope	β (°)	[SF Slip	[1.5
H3	(m)	2.6	xf	(m)		хр	(m)		Wall frict	δ (°)		ULS DL Factor	[1.4
Hw	(m)	2.6	At	(m)	0.25	L	(kN/m)		ρ Conc	kN/m ³	25	ULS LL Factor	[1.6
Hr	(m)		Ab	(m)	0.25	xl	(m)		ρ Soil	kN/m ³	18	Pmax (kPa)	[400
В	(m)		Cov wall	mm	50	Lh	(kN/m)		fcu	(MPa)	25	Soil Poisson v	[0.5
D	(m)	1.85	Cov base	mm	50	х	(m)		fy	(MPa)	360	DLFac Slide/Ovt		1

Seepage not allowed

Active pressure applied on back of shear key for sliding

Theory : Coulomb Wall type : Propped cantilever

SEISMIC ANALYSIS SETTINGS:

Seismic Analysis ON/OFF:OFF

Hor Accel.	(g)	
Vert Accel.	(g)	
Include LL's		

VALUES OF PRESSURE COEFFICIENTS:

Active Pressure coefficient Ka :0.406 Passive Pressure coefficient Kp :2.464 Base frictional constant μ :0.466

كل القوى المؤثرة على حائط السند و حساب العزوم بالتفصيل

	FORCES	(kN) and th	eir LEVER ARMS	(m)
Description	F Horizontal	Lever arm	F Vertical	Lever arm
	left (+)		down (+)	
Destabilizing forces:				
Total Active pressure Pa	0.584	0.133	0.000	0.250
Triangular W-table press Pw	0.466	0.133	0.000	0.250
W-table pr below free water	8.633	0.200	0.000	0.250
Free water pressure Pwf	23.740	1.133	0.000	0.250
Hydrostatic pressure on bot			0.000	1.050
of base: uniform portion				
Hydrostatic pressure on bot			0.000	1.400
of base: triangular portion				
Stabilizing forces:				
Passive pressure on base Pp	-9.954	0.223		
Weight of the wall + base			37.250	0.646
Weight of soil on the base			0.000	1.175
Hydrostatic pressure on top			39.927	1.175
of rear portion of base				
Hydrostatic pressure on top			0.000	0.000
of front portion of base				
FOULT.IBRIUM CALCULATIONS	ΔT ST.S			

All forces/moments are per m width

1.Force Equilibrium at SLS

حساب معامل الانزلاق

EQUILIBRIUM CALCULATIONS AT ULS All forces/moments are per m width

1.Force Equilibrium at ULS

Sum of Vertical forces Pv : 77.18 kN Frictional resistance Pfric : 35.99 kN Passive Pressure on shear key : 0.00 kN Passive pressure on base : 9.95 kN Horizontal reaction at top : 7.14 kN => Total Horiz. resistance Fr : 53.08 kN

=> Horizontal resistance at base Fr(base) : 53.08 kN
Reaction at base : 39.65 kN
Safety factor against base sliding = Fr(base)/Reaction(base) = 1.339

عمل Check Shear على الحائط

SHEAR CHECK AT WALL-BASE JUNCTION TO BS8110 - 1997

Shear force at bottom of wall V = 28.2 kNShear stress at bottom of wall v = 0.15 MPa OKAllowable shear stress vc = 0.40 MPa (based on Wall tensile reinf.)

Bending Schedule:

في هذه القائمة يتم توضيح أماكن حديد التسليح و عددها و أقطار ها اللازمة لمقاومة هذه العزوم

أولا : الجدول الخاص بتفاصيل التسليح :

Bending Schedule	Parameters
Schedule file name:	WALLBS
Back vertical bars:	Y10@200
Front vertical bars:	Y10@200
Back horizontal bars:	Y10@200
Front horizontal bars:	Y10@200
Back starter bars:	Y10@200
Front starter bars:	Y10@200
Base top bars:	Y12@200
Base bottom bars:	Y12@200
Base top lacing bars:	Y12@200
Base bot lacing bars:	Y12@200
Shear key stirrups:	Y10@200
Shear key lacings:	Y10@200
Top dips:	1-R10/m2
Bottom clips:	1-R10/m2
Bond stress (MPa):	2.5
Cover wall back (mm):	50
Cover wall front (mm):	20
Cover base top (mm):	50
Cover base bot (mm):	50
Length of wall (m):	6
First bar mark:	01
Language (A/E):	E

1-Schedule file name:

هو الاسم الخاص بالملف " اختياري "

2-Back Vertical Bars:

الحديد الرأسي الخلفي و يرمز له في الرسم ب (NF) و هو يساوي :

Y10 @ 200

و بالتالي يتم قرأه التسليح بأنه ١٠ أسياخ كل ٢٠٠ مم و بالتالي يتم هكذا قراءة التسليح الذي تم في اللوحه المخرجه كالتالي

SECTION

Part 14

Design Retaining Wall

"Gravity wall"

Introduction:

تستخدم هذه الحوائط في سند جوانب التربه من الأنهيار وتعتمد بشكل كبير في أتزانها على وزنها الكبير نسبيا " ثقلها " لذلك تسمى بالحوائط الثقليه .

Choose Icon:

Example: Design The Gravity Wall Using Prokon Program?

Given Data :

- H1 : Hight Wall = 12 m
- H2 : Hight Soil in Front Wall = 0.8 m
- Hw : Hight The Ground Water in The soil = 8 m
- C : Width The Soil in Front Wall = 0.4 m
- At : Thickness Above Wall = 1.5 m
- Ab : Thickness Bottom Wall = 6 m
- All Cover = 50 mm
- W " Uniform load in Soil " = 0 kN/m2
- P " Point load in soil " = 0 kN
- Xp = 0 m
- L = 0 kN / m
- XL = 0 m
- Lh = kN /m
- X = 0 m
- Soil Friction $= 25^{\circ}$

```
زاويه الأحتكاك الداخلي للــــتربة : هيا المقاومة الناتجة من احتكاك حبيبات التربة مع بعضها البعض
```

Fill Slope $\beta = 0$

```
هيا زاوية ميل سطح التربه التي يحجز ها حائط السند
```

Wall Friction = 15°

```
هيا زاويه ميل ظهر حائط السند
```

Density Concrete = 25kN/m3

Density Soil = 18 kN / m3

Fcu = 25 Mpa

Fy = 360 Mpa

Safty Factor Overturning, Sliding = 1.5

Ultimate D.L Factor = 1.4

Ultimate L.L Factor = 1.6

Pmax = 400 kpa

Soil Poisson = 0.5

Slide \setminus Overturning = 1

بعد الانتهاء من أدخال ال Input نرى في الأسفل هذه القائمة

Title Gravity w	/all exam	ple		
Seismic Analy	/sis	User defined design values		
Apply Active pressure on back of shear key for sliding			g	
Hor Accel. (g)	0.02	Design Values		
Vert Accel. (g)	0.01	Ka 0.554		
Include LL's	Y	Кр	3.855	
Allow Seepag	e	Ka incl. seismic effect	0.000	
Ontimiza		Kp incl. seismic effect	0.000	
Optimize	Base Friction const		0.466	
Select B Se	elect D	[T]riang/[U]niform pressure T		
Selec <u>t</u> F		Uniform pressure coefficient 0.65		
Theory Cou	lomb (Red	commended) 🔽 Syn	nbols	
Wall Type Can	tilever	🗾 Input	errors	
			-	

في خالة ال Title يتم أدخال عنوان " اسم للمشروع "

نختار ال Seismic Analysis في حاله الرغبة في ادخال تأثير الزلازل في الاعتبار عند التصميم

و عند الرغبة في اضافتها في البرنامج يطلب من المستخدم اضافة الترددات الخاصه بدراسة الزلزال التي يجب أن يصمم عليها طبقا لدراسات المنطقة .

في حاله اختيار User defined design Value في هذه الحالة يقوم المستخدم بتعريف القيم التصميمة في حاله أن القيم التي التي يتم التصميم بها في البرنامج غير تابعه للكود الخاص به أو أن الكود غير موجود بالبرنامج

في حاله الرغبة في وضع حالة التسرب في الاعتبار خلال التصميم فأننا نختار Allow Seepage

نلاحظ في خانـة ال Theory " النظرية المستخدمة " في عمليه التصميم وهما نوعين من النظريات

" Coulomb " Recommended-1

نظرية كولومب " و يقترحها البرنامج على أنها نظريه مستحسنه الاستخدام " لذلك سنختار هذه النظرية في التصميم التي تنص على انه يتم تطبيقها في حالة أخذ في الأعتبار خشونة الحائط الساند و تستخدم هذه النظرية في كل انواع التربة المتماسكة و غير المتماسكة .

Theory	Coulomb	(Recommended)	

2-Rankine "Not recommended"

نظرية رانكن " و يقترحها البرنامج على انها نظرية غير مستحسنه الاستخدام " هيا أكثر النظريات شيوعا و استخداما و قد و ضعت بفرض أن التربة ممتدة أفقيا امتداد لانهائيا ومتجانسة و جافة و غير متماسكة و ان سطح الأرض مستوى أفقيا أو مائلا و ان الحائط يتحرك بمقدار يؤدي بالتربة الى حالة الاتزان اللدن و سطحه أملس وقد اتسعت هذه النظرية ليشمل

Theory Rankine (Not recommended)	-	
----------------------------------	---	--

يتم الظهور في أسفل شاشه المدخلات مربع خالي و هو حبارة ال Input Error و فيه يذكر كل الأخطاء في المدخلات في حالة و جودها كالتالي :

Part 11

Design Isolated Footing

Introduction:

يتم استخدام الأساسات المفردة لنقل الأحمال القادمة من الأعمدة الى التربة و تعتبر أبسط انواع الأساسات و أقلها في تحمل الأحمال و تصمم في حاله الأحمال العادية غالبا .

Input Data:

Example: Design The Isolated Foundation The Following Data?

- 1-Base Length A = 3 m
- 2-Base Width B = 3 m
- 3-Coulmn Dimension = 0.7 * 0.7
- 4-Coulmn High = 3 m
- 5-Base Width Y = 1 m
- 6-Soil Cover Z = 0.8 m
- 7-Conceret Density = 25 & Soil Density = $18 \text{ kN}/\text{m}^3$
- 8-Soil Friction Angele = 22°
- 9-Base Friction Constant = 0.5

هو معامل يتم حسابه من خلال الاحتكاك بين القاعدة و التربة و تكمن أهميه هذا المعامل في أنه يساعدنا على حساب الاحتكاك الأفقي بين التربة و القاعدة .

10-Rebar Depth:

Rebar Depth Top X (mm) : X محرر X محرر التسليح العلوي الى بداية القاعدة في محرر Rebar Depth Top Y (mm) : Y محرر Y (mm) : Rebar Depth Bottom X (mm) : Rebar Depth Bottom X (mm) : X محور X محور X محرر X

هيا المسافة من نص سيخ حديد التسليح السفلي الى نهاية الفاعدة في محور X Rebar Depth Bottom Y (mm) :

هيا المسافة من نص سيخ حديد التسليح السفلي الى نهاية القاعدة في محور Y

- Rebar Depth Top X = 60 mm
- Rebar Depth Top Y = 60 mm
- Rebar Depth Bottom X = 60 mm
- Rebar Depth Bottom Y = 60 mm

11-ULS Ovt FL: Self Wight = 1

Ultimate limited state overturning factor for self wight

12-ULS LF: Self Wight = 1

Ultimate Limited state slipping factor for self wight

13-Max.SLS bearing $pr = 400 \text{ kN} \text{m}^2$

Maximum bearing capacity of soil

14-S. F Overturning (ULS) = 2

Ultimate limit state safety factor against Overturning

15-S. F Slip (ULS) = 2

Ultimate limit state safety factor against Slipping

16-Fcu Base = 25 Mpa

17-Fcu Col = 25 Mpa

18-fy = 360 Mpa

Base length A	(m)	3
Base width B	(m)	3
Column(s)	Col 1	Col 2
C (m)	0.7	
D (m)	0.7	
E (m)		
F (m)		
Stub column heigh	ntX (m)	1
Base depth Y	(m)	0.7
Soil cover Z	(m)	0.8
Concrete density	(kN/m ³)	25
Soil density	(kN/m ³)	18
Soil friction angle	(°)	22
Base friction const	ant	0.5
Rebar depth top X	(mm)	60
Rebar depth top Y	(mm)	60
Rebar depth botto	m X (mm)	60
Rebar depth botto	mY (mm)	60
ULS ovt. LF: Self we	eight	1
ULS LF: Self weight	t	1
Max. SLS bearing p	or. (kN/m²)	400
S.F. Overturning (U	JLS)	2
S.F. Slip (ULS)		2
fcu base	(MPa)	25
fcu columns	(MPa)	25
fy	(MPa)	360

2-Load Table:

يتم بعد در اسه الأحمال القادمه من العامود على الأساس أدخال هذه الأحمال في البرنامج و ليكن أن الأحمال القادمه من العامود تساوي ١٠٠ طن بما يعادل ١٠٠٠ كيلونيوتن

					Unfactore	ed Loads			
Load Case	Col no.	LF ULS ovt	LF ULS	P (kN)	Hx (kN)	Hy (kN)	Mx (kNm)	My (kNm)	
1	1	1	1	1000					
									-
									-

3-Coast Table:

في هذه الأيقونه يتم حساب المبلغ المالي اللازم لكميه الخرسانه و الحديد اللازمه لأعداد الأساس

و بالتالي بسعر المتر المكعب من الخرسانه اليوم = ٤٠٠ جنيه

سعر الطن من الحديد اليوم = ١٠٠٠٠ جنيه

Optimize Costs Concr. /m³ 400 Reinf. /ton 10000 Optimize A,B & Y Select A Select B Abort Optimization

4-Design Bar:

و هو الضغط الناتج على التربه نتيجه وزن القاعده و الحمل عليها في حاله ال ULS

و هيا حاله ال Ultimate Limit State

و هيا حاله ال serviceability limit state

في الجزء التالي نلاحظ أن جميع معاملات الأمان أكبر من المدخلات بالتالي أمنه في التصميم

SF overturning (SLS)	>100
SF overturning (ULS)	>100
Safety Factor slip (ULS)	>100
Safety Factor uplift (ULS)	>100

في الجزء التالي يقوم البرنامج بحساب العزوم الناتجه على الأحمال في القاعده و من خلالها حساب التسليح اللازم علويا و سفليا كما بالشكل التالي

• • • • •	
Bottom	
Design moment X kNm/m)	75.65
Reinforcement X (mm ² /m)	271
Design moment Y kNm/m)	75.65
Reinforcement Y (mm ² /m)	271
Тор	
Design moment X kNm/m)	0.00
Reinforcement X (mm ² /m)	0
Design moment Y kNm/m)	0.00

يتم في الخطوة التاليه حساب قيمه قوى القص على القاعده و هل هيا أمنه من عدمه ام لا + حساب قيمه قوى اختراق العامود للقاعده ال Punching

Reinforcement Y (mm²/m) 0

-		
Linear Shear X	(MPa)	0.022
vc	(MPa)	0.336
Linear Shear Y	(MPa)	0.022
vc	(MPa)	0.336
Linear Shear Other	(MPa)	0.000
Punching Shear	(MPa)	N.A.
vc	(MPa)	N.A.
vcu	(MPa)	4.00
v col face	(MPa)	0.50

أخيرا يقوم البرنامج بحساب التكلفه للازم لعمل هذا الأساس كالتالي

Cost 3982.37

نجد أيضا من خلال شاشه الحل ان البرنامج يضح لنا من خلال الرسم خطوط توضح أماكن العزوم و القص على الاساس المدخل .

5-Calcsheets :

Eile Input Design Calcsheets Bending Schedule Help

من خلال هذه الأيقونه يتم توضيح كافه تفاصيل المدخلات و كافه تفاصيل الحل من خلال Sheet جاهزة للطباعه و التعديل و بكامل تفاصيل الحل و المدخلات

Column Base Design					sign						
File	Input	Design	Calcsheets	Bending Sche	dule <u>H</u> e	elp					
0											
Щ.											
M											
					Job Number				Sheet)
Q		سق)		Jew	Job Title						1
n ì		Soft	vare Consultants (F net: http://www.prol	Pty) Ltd kon.com	Client						1
9		E-M	all : mall@prokon.c	om	Calcs by		Checked by	Date			1
0		Co	lumn Ba	ase Desi	an :						1
					3				C1	15	
Q.		Inp	ut Data							<u>-</u>	
B										-	
4		Ba	ase length A	(m)	3						
		6	olumn(s)	Col 1	Col 2						
• B •		c		(m) 0.7							
		D D		(m) 0.7]					
		E		(m)							
		- Is	uh column hein	(m) ht X (m)	3						
		Ba	ase depth Y	(m)	1						
		ŝ	oil cover Z	(m)	0.8	1					
		i i	oncrete density	(kN/m ³)	25	1					
		S	oil density	(kN/m ³)	18	1					
		S	oil friction angle	(*)	22]					
		B	ase friction con	stant	0.5]					
		R	ebar depth top)	((mm)	60]					
		R	ebar depth top `	Y (mm)	60]					
		R	ebar depth botto	om X (mm)	60						
		R	ebar depth bott	om Y (mm)	60]					
		U	LS ovt. LF: Sel	f weight	1						
		[Ū	LS LF: Self wei	ght	1]					
		M	ax. SLS bearing	pr. (kN/m²)	400]					
		S.	F. Overturning	(ULS)	2]					
		S.	F. Slip (ULS)		2]					
		fo	u base	(MPa)	25]					
		fo	u columns	(MPa)	25]					
		fy	/	(MPa)	360]					
						-					

6-Bending Schedule:

```
Eile Input Design Calcsheets Bending Schedule Help
```

في هذه القائمه يتم حساب حديد التسليح اللازم للأساس اضافه لرسم لوحات التسليح مع ايضاح نموذج ثلاثي الأبعاد لتسليح الأساس

Bending Schedule Parameters					
Bars	Suggested	Entered			
Bot X-direction	Y25@350	Y25@350			
Bot Y-direction	Y25@350	Y25@350			
Top X-direction					
Top Y-direction					

في هذه القائمه يتم توضيح الحديد اللازم لتسليح الأساس في الأتجاه Y, X و هو حديد قطر ٢٥ مم مسافه كل ٣٥٠ مم

Rebar (mm²/m)					
Suggested	Entered	Required	Nominal		
1402	1402	271	1300		
1402	1402	271	1300		
0	0	0	1300		
0	0	0	1300		

في هذه القائمه يتم توضيح الحديد المطلوب و الذي تم ادخاله في البر نامج

Column Parameters	Colu	ımn 1	Column 2		
Bars	Suggested	Entered	Suggested	Entered	
Main Bars	4Y25	4Y25			
Middle bars vert faces	2Y20	2Y20			
Middle bars hor faces	2Y20	2Y20			
Column type	Stub				
Lap length factor	45				
Link diameter (mm)	10				
Link width (mm)	640				
Link height (mm)	640				
No. of Links	3				
Column names	col1				

في هذا الجدول يتم توضيح تسليح العامود فالحديد الرئيسي هنا ٤ أسياخ قطر ٢٥ مم ، الحديد في منتصف العامود سيخين قطر ٢٠ مم

عدد الكانات ٣ كانات

يتم اختيار الخيارات السابقه لأنه يمصل شكل التسليح الأقرب للكود المصري

و توضح اللوحات التاليه شكل تسليح الأساسات و ايضا يتم أختيار أيقونه 3D لتوضيح شكل التسليح ثلاثي الأبعاد

